Applied Composite Materials

, Volume 26, Issue 1, pp 139–157 | Cite as

Meso-Scale Finite Element Analysis of Mechanical Behavior of 3D Braided Composites Subjected to Biaxial Tension Loadings

  • Chao ZhangEmail author
  • Jose L. Curiel-Sosa
  • Tinh Quoc Bui


In many engineering applications, 3D braided composites are designed for primary loading-bearing structures, and they are frequently subjected to multi-axial loading conditions during service. In this paper, a unit-cell based finite element model is developed for assessment of mechanical behavior of 3D braided composites under different biaxial tension loadings. To predict the damage initiation and evolution of braiding yarns and matrix in the unit-cell, we thus propose an anisotropic damage model based on Murakami damage theory in conjunction with Hashin failure criteria and maximum stress criteria. To attain exact stress ratio, force loading mode of periodic boundary conditions which never been attempted before is first executed to the unit-cell model to apply the biaxial tension loadings. The biaxial mechanical behaviors, such as the stress distribution, tensile modulus and tensile strength are analyzed and discussed. The damage development of 3D braided composites under typical biaxial tension loadings is simulated and the damage mechanisms are revealed in the simulation process. The present study generally provides a new reference to the meso-scale finite element analysis (FEA) of multi-axial mechanical behavior of other textile composites.


3D braided composites Unit-cell Mechanical behavior Biaxial tension Meso-scale FEA 



This work was supported by the Natural Science Research Project of Colleges and Universities in Jiangsu Province (17KJB130004), Natural Science Foundation of Jiangsu Province (BK20150479, BK20160786), Jiangsu Government Scholarship for Overseas Studies and Jiangsu University Study-abroad Fund.


  1. 1.
    Cai, D.A., Zhou, G.M., Wang, X.P., Li, C., Deng, J.: Experimental investigation on mechanical properties of unidirectional and woven fabric glass/epoxy composites under off-axis tensile loading. Polym. Test. 58, 142–152 (2017)CrossRefGoogle Scholar
  2. 2.
    Quaresimin, M., Susmel, L., Talreja, R.: Fatigue behaviour and life assessment of composite laminates under multiaxial loadings. Int. J. Fatigue. 32(1), 2–16 (2010)CrossRefGoogle Scholar
  3. 3.
    Makris, A., Ramault, C., Van Hemelrijck, D., Zarouchas, D., Lamkanfi, E., Van Paepegem, W.: An investigation of the mechanical behavior of carbon epoxy cross ply cruciform specimens under biaxial loading. Polym. Compos. 31(9), 1554–1561 (2010)CrossRefGoogle Scholar
  4. 4.
    Chen, Z., Fang, G.D., Xie, J.B., Liang, J.: Experiment investigation on biaxial tensile strength of 3D in-plane braided C/C composites. J. Solid. Rocket. Technol. 38(2), 267–272 (2015)Google Scholar
  5. 5.
    Li, L.Y., Meng, H.S., Wang, G.Y., Zhang, T., Xu, C.H., Ke, H.J.: Mechanical behaviors of the composites reinforced by non-crimp unidirectional carbon fiber fabrics under biaxial compression loading. J. Harb. Inst. Technol. 47(10), 20–24 (2015)Google Scholar
  6. 6.
    Cichosz, J., Wehrkamp-Richter, T., Koerber, H., Hinterholzl, R., Camanho, P.P.: Failure and damage characterization of biaxial braided composites under multiaxial stress states. Compos. Part A. 90, 748–759 (2016)CrossRefGoogle Scholar
  7. 7.
    Rashedi, A., Sridhar, I., Tseng, K.J.: Fracture characterization of glass fiber composite laminate under experimental biaxial loading. Compos. Struct. 138, 17–29 (2016)CrossRefGoogle Scholar
  8. 8.
    Cai, D.A., Tang, J., Zhou, G.M., Wang, X.P., Li, C., Silberschmidt, V.V.: Failure analysis of plain woven glass/epoxy laminates: comparison of off-axis and biaxial tension loadings. Polym. Test. 60, 307–320 (2017)CrossRefGoogle Scholar
  9. 9.
    Correa, E., Barroso, A., Perez, M.D., Paris, F.: Design for a cruciform coupon used for tensile biaxial transverse tests on composite materials. Compos. Sci. Technol. 145, 138–148 (2017)CrossRefGoogle Scholar
  10. 10.
    Wehrkamp-Richter, T., Hinterholzl, R., Pinho, S.T.: Damage and failure of triaxial braided composites under multi-axial stress states. Compos. Sci. Technol. 150, 32–44 (2017)CrossRefGoogle Scholar
  11. 11.
    Zhou, Y., Lu, Z.X., Yang, Z.Y.: Progressive damage analysis and strength prediction of 2D plain weave composites. Compos. Part B. 47, 220–229 (2013)CrossRefGoogle Scholar
  12. 12.
    Lu, Z.X., Zhou, Y., Yang, Z.Y., Liu, Q.: Multi-scale finite element analysis of 2.5D woven fabric composites under on-axis and off-axis tension. Comput. Mater. Sci. 79, 485–494 (2013)CrossRefGoogle Scholar
  13. 13.
    Zhang, D.T., Sun, Y., Wang, X.M., Chen, L.: Meso-scale finite element analyses of three-dimensional five-directional braided composites subjected to uniaxial and biaxial loading. J. Reinf. Plast. Compos. 34(24), 1989–2005 (2015)CrossRefGoogle Scholar
  14. 14.
    Wang, B.L., Fang, G.D., Liang, J., Wang, Z.Q.: Failure locus of 3D four-directional braided composites under biaxial loading. Appl. Compos. Mater. 19(3–4), 529–544 (2012)CrossRefGoogle Scholar
  15. 15.
    Fang, G.D., Liang, J., Wang, B.L.: Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension. Compos. Struct. 89, 126–133 (2009)CrossRefGoogle Scholar
  16. 16.
    Lu, Z.X., Xia, B., Yang, Z.Y.: Investigation on the tensile properties of three dimensional full five directional braided composites. Comput. Mater. Sci. 77, 445–455 (2013)CrossRefGoogle Scholar
  17. 17.
    Zhang, C., Li, N., Wang, W.Z., Binienda, W.W., Fang, H.B.: Progressive damage simulation of triaxially braided composite using a 3D meso-scale finite element model. Compos. Struct. 125, 104–116 (2015)CrossRefGoogle Scholar
  18. 18.
    Kang, H.R., Shan, Z.D., Zang, Y., Liu, F.: Progressive damage analysis and strength properties of fiber-bar composites reinforced by three-dimensional weaving under uniaxial tension. Compos. Struct. 141, 264–281 (2016)CrossRefGoogle Scholar
  19. 19.
    Zhang, C., Curiel-Sosa, J.L., Bui, T.Q.: A novel interface constitutive model for prediction of stiffness and strength in 3D braided composites. Compos. Struct. 163, 32–43 (2017)CrossRefGoogle Scholar
  20. 20.
    Wang, R.Q., Zhang, L., Hu, D.Y., et al.: Progressive damage simulation in 3D four-directional braided composites considering the jamming-action-induced yarn deformation. Compos. Struct. 178, 330–340 (2017)CrossRefGoogle Scholar
  21. 21.
    Zhang, C., Mao, C.J., Zhou, Y.X.: Meso-scale damage simulation of 3D braided composites under quasi-static axial tension. Appl. Compos. Mater. 24(5), 1179–1199 (2017)CrossRefGoogle Scholar
  22. 22.
    Hashin, Z.: Failure criteria for unidirectional fiber composite. J. Appl. Mech. 47, 329–334 (1980)CrossRefGoogle Scholar
  23. 23.
    Lapczyk, I., Hurtado, J.A.: Progressive damage modeling in fiber reinforced materials. Compos. Part A. 38(11), 2333–2341 (2007)CrossRefGoogle Scholar
  24. 24.
    Murakami, S.: Mechanical modeling of material damage. ASME. J. Appl. Mech. 55, 280–286 (1988)CrossRefGoogle Scholar
  25. 25.
    Zako, M., Uetsuji, Y., Kurashiki, T.: Finite element analysis of damaged woven fabric composite materials. Compos. Sci. Technol. 63(3–4), 507–516 (2003)CrossRefGoogle Scholar
  26. 26.
    Chen, L., Tao, X.M., Choy, C.L.: On the microstructure of three-dimensional braided preforms. Compos. Sci. Technol. 59(3), 391–404 (1999)CrossRefGoogle Scholar
  27. 27.
    Xu, K., Xu, X.: On the microstructure model of four-step 3D rectangular braided composites. Acta. Mater. Compos. Sin. 23(5), 154–160 (2006)Google Scholar
  28. 28.
    Xia, Z.H., Zhang, Y.F., Ellyin, F.: A unified periodical boundary conditions for representative volume elements of composites and applications. Int. J. Solids Struct. 40(8), 1907–1921 (2003)CrossRefGoogle Scholar
  29. 29.
    Li, S.G.: Boundary conditions for unit cells from periodic microstructures and their implications. Compos. Sci. Technol. 68(9), 1962–1974 (2008)CrossRefGoogle Scholar
  30. 30.
    Zhang, C., Curiel-Sosa, J.L., Bui, T.Q.: Comparison of periodic mesh and free mesh on the mechanical properties prediction of 3D braided composites. Compos. Struct. 159, 667–676 (2017)CrossRefGoogle Scholar
  31. 31.
    Chamis, C.C.: Mechanics of composites materials: past, present and future. J. Compos. Technol. Res. 11(1), 3–14 (1989)CrossRefGoogle Scholar
  32. 32.
    Wang, X.F., Wang, X.W., Zhou, G.M., Zhou, C.W.: Multi-scale analyses of 3D woven composite based on periodicity boundary conditions. J. Compos. Mater. 41, 1773–1788 (2007)CrossRefGoogle Scholar
  33. 33.
    Xu, K., Xu, X.: Finite element analysis of mechanical properties of 3D five-directional braided composites. Mater. Sci. Eng. A. 487(1–2), 499–509 (2008)CrossRefGoogle Scholar
  34. 34.
    Zhang, C., Xu, X.W.: Finite element analysis of 3D braided composites based on three unit-cells models. Compos. Struct. 98, 130–142 (2013)CrossRefGoogle Scholar
  35. 35.
    Zhang, D.T., Chen, L., Wang, Y.J., et al.: Stress field distribution of warp-reinforced 2.5D woven composites using an idealized meso-scale voxel-based model. J. Mater. Sci. 52, 6814–6836 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Chao Zhang
    • 1
    • 2
    Email author
  • Jose L. Curiel-Sosa
    • 2
  • Tinh Quoc Bui
    • 3
  1. 1.School of Mechanical EngineeringJiangsu UniversityZhenjiangChina
  2. 2.Department of Mechanical EngineeringThe University of SheffieldSheffieldUK
  3. 3.Department of Civil and Environmental EngineeringTokyo Institute of TechnologyTokyoJapan

Personalised recommendations