Applied Composite Materials

, Volume 25, Issue 3, pp 647–660 | Cite as

Identification and Modelling of the In-Plane Reinforcement Orientation Variations in a CFRP Laminate Produced by Manual Lay-Up

  • Yves Davila
  • Laurent Crouzeix
  • Bernard Douchin
  • Francis Collombet
  • Yves-Henri Grunevald


Reinforcement angle orientation has a significant effect on the mechanical properties of composite materials. This work presents a methodology to introduce variable reinforcement angles into finite element (FE) models of composite structures. The study of reinforcement orientation variations uses meta-models to identify and control a continuous variation across the composite ply. First, the reinforcement angle is measured through image analysis techniques of the composite plies during the lay-up phase. Image analysis results show that variations in the mean ply orientations are between −0.5 and 0.5° with standard deviations ranging between 0.34 and 0.41°. An automatic post-treatment of the images determines the global and local angle variations yielding good agreements visually and numerically between the analysed images and the identified parameters. A composite plate analysed at the end of the cooling phase is presented as a case of study. Here, the variation in residual strains induced by the variability in the reinforcement orientation are up to 28% of the strain field of the homogeneous FE model. The proposed methodology has shown its capabilities to introduce material and geometrical variability into FE analysis of layered composite structures.


Variability In-plane fibre orientation FE models Meta-models 



The authors would like to acknowledge the Consejo Nacional de Ciencia y Tecnologia (CONACyT) of Mexico for providing the funding for the PhD thesis work of Yves Davila.


  1. 1.
    Davila, Y.: Étude multi-échelle du couplage matériaux-procédés pour l’identification et la modélisation des variabilités au sein d’une structure composite. PhD Thesis, Université de Toulouse 3 Paul Sabatier, France (2015)Google Scholar
  2. 2.
    Davila, Y., Crouzeix, L., Douchin, B., Collombet, F., Grunevald, Y.-H.: Spatial evolution of the thickness variations over a CFRP laminated structure. Appl. Compos. Mater. (2017). doi: 10.1007/s10443-016-9573-5
  3. 3.
    Chamis, C.C.: Probabilistic composite design. Compos. Mater. Test. Des. 13, 23–42 (1997)Google Scholar
  4. 4.
    Potter, K.D., Khan, B., Wisnom, M.R., Bell, T., Stevens, J.: Variability, fibre waviness and misalignment in the determination of the properties of composite materials and structures. Compos. Part A Appl. Sci. Manuf. 39(9), 1343–1354 (2008)CrossRefGoogle Scholar
  5. 5.
    Trask, R.S., Hallett, S.R., Helenon, F.M.M., Wisnom, M.R.: Influence of process induced defects on the failure of composite T-joint specimens. Compos. Part A Appl. Sci. Manuf. 43(4), 748–757 (2012)CrossRefGoogle Scholar
  6. 6.
    Arao, Y., Koyanagi, J., Utsunomiya, S., Kawada, H.: Effect of ply angle misalignment on out-of-plane deformation of symmetrical cross-ply CFRP laminates: accuracy of the ply angle alignment. Compos. Struct. 93(4), 1225–1230 (2011)CrossRefGoogle Scholar
  7. 7.
    Yurgartis, S.W.: Measurement of small angle fiber misalignments in continuous fiber composites. Compos. Sci. Technol. 30(4), 279–293 (1987)CrossRefGoogle Scholar
  8. 8.
    Barwick, S., Papathanasiou, T.: Identification of fiber misalignment in continuous fiber composites. Polym. Compos. 3, 475–486 (2003)CrossRefGoogle Scholar
  9. 9.
    Creighton, C.J., Sutcliffe, M.P.F., Clyne, T.: A multiple field image analysis procedure for characterisation of fibre alignment in composites. Compos. Part A Appl. Sci. Manuf. 32(2), 221–229 (2001)CrossRefGoogle Scholar
  10. 10.
    Kratmann, K., Sutcliffe, M.P.F., Lilleheden, L., Pyrz, R., Thomsen, O.: A novel image analysis procedure for measuring fibre misalignment in unidirectional fibre composites. Compos. Sci. Technol. 69(2), 228–238 (2009)CrossRefGoogle Scholar
  11. 11.
    Sutcliffe, M.P.F., Lemanski, S.L., Scott, A.E.: Measurement of fibre waviness in industrial composite components. Compos. Sci. Technol. 72(16), 2016–2023 (2012)CrossRefGoogle Scholar
  12. 12.
    Requena, G., Fiedler, G., Seiser, B., Degischer, P., Di Michiel, M., Buslaps, T.: 3D-quantification of the distribution of continuous fibres in unidirectionally reinforced composites. Compos. Part A Appl. Sci. Manuf. 40(2), 152–163 (2009)CrossRefGoogle Scholar
  13. 13.
    Skordos, A.A., Sutcliffe, M.P.F.: Stochastic simulation of woven composites forming. Compos. Sci. Technol. 68(1), 283–296 (2008)CrossRefGoogle Scholar
  14. 14.
    Mesogitis, T.S., Skordos, A.A., Long, A.C.: Non-crip fabrics geometrical variability and its influence on composite cure. In: Proceedings of the16th European Conference on Composite Materials. Seville, Spain (2014)Google Scholar
  15. 15.
    Potter, K.D., Langer, C., Hodgkiss, B., Lamb, S.: Sources of variability in uncured aerospace grade unidirectional carbon fibre epoxy preimpregnate. Compos. Part A Appl. Sci. Manuf. 38(3), 905–916 (2007)CrossRefGoogle Scholar
  16. 16.
    Shi, L., Wu, S.: Automatic fiber orientation detection for sewed carbon fibers. Tsinghua Sci. Technol. 12(4), 447–452 (2007)CrossRefGoogle Scholar
  17. 17.
    Redon, C., Chermant, L., Chermant, J., Coster, M.: Automatic image analysis and morphology of fibre reinforced concrete. Cem. Concr. Compos. 21, 403–412 (1999)CrossRefGoogle Scholar
  18. 18.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)CrossRefGoogle Scholar
  19. 19.
    Goshtasby, A., Oneill, W.D.: Curve fitting by a sum of Gaussians. CVGIP Graph. Model. Image Process. 56(4), 281–288 (1994)CrossRefGoogle Scholar
  20. 20.
    Davila, Y., Crouzeix, L., Douchin, B., Collombet, F., Grunevald, Y.-H.: Quantification of sources of variability in CFRP plates cured in autoclave. In: Proceedings of the 19th International Conference on Composite Materials, pp. 2560-67. Montreal, Canada (2013)Google Scholar
  21. 21.
    Olave, M., Vanaerschot, A., Lomov, S.V., Vandepitte, D.: Internal geometry variability of two woven composites and related variability of the stiffness. Polym. Compos. 33(8), 1335–1350 (2012)Google Scholar
  22. 22.
    Torres, M., Douchin, B., Collombet, F., Crouzeix, L., Grunevald, Y., Bazer-bachi, R.: Valeur ajoutée d’une encapsulation de capteurs silicium pour l’instrumentation à cœur des structures composites. In: Proceedings of the 17emes Journées Nationales sur les composites. Poitiers, France (2011)Google Scholar
  23. 23.
    Mulle, M., Collombet, F., Olivier, P., Zitoune, R., Huchette, C., Laurin, F., Grunevald, Y.: Assessment of cure-residual strains through the thickness of carbon–epoxy laminates using FBGs Part II: Technological specimen. Compos. Part A Appl. Sci. Manuf. 40(10), 1534–1544 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.INSA, UPS, Mines d’Albi, ISAE, ICA (Institut Clément Ader)Université de ToulouseToulouseFrance
  2. 2.Composites Expertise & SolutionsLa Penne Sur HuveauneFrance

Personalised recommendations