Applied Composite Materials

, Volume 25, Issue 3, pp 507–526 | Cite as

Characterization of a New Fully Recycled Carbon Fiber Reinforced Composite Subjected to High Strain Rate Tension

  • H. MeftahEmail author
  • S. Tamboura
  • J. Fitoussi
  • H. BenDaly
  • A. Tcharkhtchi


The aim of this study is the complete physicochemical characterization and strain rate effect multi-scale analysis of a new fully recycled carbon fiber reinforced composites for automotive crash application. Two composites made of 20% wt short recycled carbon fibers (CF) are obtained by injection molding. The morphology and the degree of dispersion of CF in the matrixes were examined using a new ultrasonic method and SEM. High strain tensile behavior up to 100 s-1 is investigated. In order to avoid perturbation due to inertial effect and wave propagation, the specimen geometry was optimized. The elastic properties appear to be insensitive to the strain rate. However, a high strain rate effect on the local visco-plasticity of the matrix and fiber/matrix interface visco-damageable behavior is emphasized. The predominant damage mechanisms evolve from generalized matrix local ductility at low strain rate regime to fiber/matrix interface debonding and fibers pull-out at high strain rate regime.


Recycled composite Carbon fibers High strain rate Fiber/matrix bond Fiber pull out 


  1. 1.
    Bos, G.: EU waste legislation and the composites industry. Seminar on recycling of composite materials, IFP SICOMP, Molndal, Sweden; 14th–15th May (2002)Google Scholar
  2. 2.
    Pimenta, S., Pinho, S.T.: Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook. Waste Manag. 31(2), 378–392 (2011)CrossRefGoogle Scholar
  3. 3.
    Pickering, S.J.: Recycling technologies for thermoset composite materials – current status. Composites Part A. 37(8), 1206–1215 (2006)CrossRefGoogle Scholar
  4. 4.
    Feih, S., Mouritz, A.P., Case, S.W.: Determining the mechanism controlling glass fiber strength loss during thermal recycling of waste composites. Compos A: Appl Sci Manuf. 76, 255–261 (2015)CrossRefGoogle Scholar
  5. 5.
    Yang, L., Sáez, E.R., Nagel, U., Thomason, J.L.: Can thermally degraded glass fiber be regenerated for closed-loop recycling of thermosetting composites? Compos A: Appl Sci Manuf. 72, 167–174 (2015)CrossRefGoogle Scholar
  6. 6.
    Suzuki T, Takahashi J. Prediction of energy intensity of carbon fiber reinforced plastics for mass-produced passenger cars. The Ninth Japan International SAMPE symposium, November 29–December (2005)Google Scholar
  7. 7.
    Pickering, S.J., Kelly, R., Kennerley, J.R., Rudd, C.D., Fenwick, N.J.: A fluidised–bed process for the recovery of glass fibres from scrap thermoset composite. Compos Sci Technol. 60(4), 509–523 (2000)CrossRefGoogle Scholar
  8. 8.
    Davidson J. Carbon fiber composites: advancements in reclamation processes and recycled material forms. Composites innovation 2007 conference proceedings. Spain: Barcelona; October 4–5, (2007)Google Scholar
  9. 9.
    Witik Robert, A., Teuscher, R., Michaud, V., Ludwig, C., Manson, J.-A.E.: Carbon fiber reinforced composite waste: an environmental assessment of recycling, energy recovery and landfilling. Compos A: Appl Sci Manuf. 49, 89–99 (2013)CrossRefGoogle Scholar
  10. 10.
    Pimenta S, Pinho ST, Robinson GS. Experimental study on the mechanical performance of recycled CFRP. ICCM 17, Edinburgh, July 27–31, (2009)Google Scholar
  11. 11.
    Yip HLH, Pickering SJ, Rudd CD. Characterisation of carbon fibres recycled from scrap composites using fluidised bed process. Plastics, Rubber and Composites: Macromolecular Engineering. 31,(6): University of Nottingham (2002)Google Scholar
  12. 12.
    Jendli, Z., Fitoussi, J., Meraghni, F., Baptiste, D.: Anisotropic strain rate effects on the fibre–matrix interface decohesion in sheet moulding compound composites. Compos Sci Technol. 65(3–4), 387–393 (2005)CrossRefGoogle Scholar
  13. 13.
    Esmaeillou, B., Fitoussi, J., Lucas, A., Tcharkhtchi, A.: Multi-scale experimental analysis of the tension-tension fatigue behavior of a short glass fiber reinforced polyamide composite. Procedia Engineering. 10, 2117–2122 (2011)CrossRefGoogle Scholar
  14. 14.
    Sichina, W.J.: Thermal Analysis for the Characterization of Polymer Impact Resistance. (2000)Google Scholar
  15. 15.
    Man Night, M.J., Paul, K.F.E.D.R., Newman, S.: Polymer Blends, vol. 1, p. 185. Academic Press, New York (1978)Google Scholar
  16. 16.
    Namita Rry Choudhury, Chaki T.K, BhowmIick, Anil K. Thermal characterization of thermoplastic elastomeric natural rubber-polypropylene blends. Thermochim Acta, 176 (1991) 149–161 Elsevier Science Publishers B.V., AmsterdamGoogle Scholar
  17. 17.
    Locke, C.E., Paul, D.R.: Chlorinated polyethylene modification of blends derived from waste plastics. Part II: Mechanism of modification Polymer Engineering & Science. 13(4), 308–318 (1973)Google Scholar
  18. 18.
    Fitoussi, J., Meraghni, F., Jendli, Z., Hug, G., Baptiste, D.: Experimental methodology for high strain-rates tensile behavior analysis of polymer matrix composites. Compos Sci Technol. 65(14), 2174e88 (2005)CrossRefGoogle Scholar
  19. 19.
    Shirinbayan, M., Fitoussi, J., Meraghni, F., Surowiec, B., Bocquet, M., Tcharkhtchi, A.: High strain rate visco-damageable behavior of Advanced Sheet Molding Compound (A-SMC) under tension. Compos Part B. 82(1), 30–41 (2015)CrossRefGoogle Scholar
  20. 20.
    Barré, S., Chotard, T., Benzaggagh, M.L.: Comparative study of strain rate effects on mechanical properties of glass fiber reinforced thermoset matrix composites. Compos A: Appl Sci Manuf. 27(12), 1169–1181 (1996)CrossRefGoogle Scholar
  21. 21.
    HKS, Inc. ABAQUS theory and users manuals. V. 6.2.1; (2001)Google Scholar
  22. 22.
    Pardo, S., Baptiste, D., Décobert, F., Fitoussi, J., Joannic, R.: Tensile dynamic behaviour of a quasi-unidirectional E-glass/polyester composite. Compos Sci Technol. 62(4), 579–584 (2002)CrossRefGoogle Scholar
  23. 23.
    Joseph, F., Michel, B., Fodil, M.: Effect of the matrix behavior on the damage of ethylene–propylene glass fiber reinforced composite subjected to high strain rate tension. Compos Part B. 45(1), 1181–1191 (2013)CrossRefGoogle Scholar
  24. 24.
    Komalan, C., George, K., Kumar, P., Varughese, K., Thomas, S.: Dynamic mechanical analysis of binary and ternary polymer blends based on nylon copolymer/ EPDM rubber and EPM grafted maleic anhydride compatibilizer. Express Polym Lett. 1(10), 641e53 (2007)CrossRefGoogle Scholar
  25. 25.
    Dedecker, K., Groeninckx, G.: Reactive compatibilization of A/(B/C) polymer blends. Part 2. Analysis of the phase inversion region and the co-continuous phase morphology. Polymer. 39((21), 4993e5000 (1998)Google Scholar
  26. 26.
    Nitta, K.H., Shin, Y.W., Hashiguchi, H., Tanimoto, S., Terano, M.: Polymer. 46, 965 (2005)CrossRefGoogle Scholar
  27. 27.
    Nitta, K.H., Kawada, T., Yamahiro, M., Mori, H., Terano, M.: Polymer. 41, 6765 (2000)CrossRefGoogle Scholar
  28. 28.
    Fitoussi, J., Meraghni, F., Jendli, Z., Hug, G., Baptiste, D.: Experimental methodology for high strain-rates tensile behaviour analysis of polymer matrix composites. Compos Sci Technol. 65(14), 2174–2188 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.LMS, ENISoUniversité de SousseSousseTunisie
  2. 2.Laboratoire PIMMParisFrance

Personalised recommendations