Applied Composite Materials

, Volume 24, Issue 5, pp 1201–1215 | Cite as

Spatial Evolution of the Thickness Variations over a CFRP Laminated Structure

  • Yves Davila
  • Laurent Crouzeix
  • Bernard Douchin
  • Francis Collombet
  • Yves-Henri Grunevald
Article

Abstract

Ply thickness is one of the main drivers of the structural performance of a composite part. For stress analysis calculations (e.g., finite element analysis), composite plies are commonly considered to have a constant thickness compared to the reality (coefficients of variation up to 9% of the mean ply thickness). Unless this variability is taken into account reliable property predictions cannot be made. A modelling approach of such variations is proposed using parameters obtained from a 16-ply quasi-isotropic CFRP plate cured in an autoclave. A discrete Fourier transform algorithm is used to analyse the frequency response of the observed ply and plate thickness profiles. The model inputs, obtained by a mathematical representation of the ply thickness profiles, permit the generation of a representative stratification considering the spatial continuity of the thickness variations that are in good agreement with the real ply profiles spread over the composite part. A residual deformation FE model of the composite plate is used to illustrate the feasibility of the approach.

Keywords

Variability Composite structure Thickness Discrete fourier transform Finite element analysis (FEA) Autoclave Unidirectional prepreg 

Notes

Acknowledgements

The authors would like to acknowledge CONACyT of Mexico for providing Yves Davila the financing for his PhD program. The authors would also give special thanks to Dr. Peter Davies from IFREMER Brest (France) for his invaluable comments and remarks.

References

  1. 1.
    Davila, Y.: Étude multi-échelle du couplage matériaux-procédés pour l’identification et la modélisation des variabilités au sein d’une structure composite. PhD Thesis (in English). Université de Toulouse 3 Paul Sabatier (2015)Google Scholar
  2. 2.
    Barkanov, E., Gluhih, S., Ozolins, O., Eglitis, E., Almeida, F., Bowering, M.C., Watson, G.: Optimal weight design of laminated composite panels with different stiffeners under buckling loads. In: 27th International Congress of the Aeronautical Sciences. pp. 1–9 (2010)Google Scholar
  3. 3.
    Li, Y., Li, M., Gu, Y., Zhang, Z.: Numerical and experimental study on the effect of lay-up type and structural elements on thickness uniformity of L-shaped laminates. Appl. Compos. Mater. 16, 101–115 (2009)CrossRefGoogle Scholar
  4. 4.
    Sun, J., Gu, Y., Li, Y., Li, M., Zhang, Z.: Role of tool-part interaction in consolidation of L-shaped laminates during autoclave process. Appl. Compos. Mater. 19, 583–597 (2011)CrossRefGoogle Scholar
  5. 5.
    Lightfoot, J.S., Wisnom, M.R., Potter, K.: A new mechanism for the formation of ply wrinkles due to shear between plies. Compos. Part A Appl. Sci. Manuf. 49, 139–147 (2013)CrossRefGoogle Scholar
  6. 6.
    Collombet, F., Mulle, M., Grunevald, Y.-H., Zitoune, R.: Contribution of embedded optical fiber with Bragg grating in composite structures for tests-simulations dialogue. Mech. Adv. Mater. Struct. 13, 429–439 (2006)CrossRefGoogle Scholar
  7. 7.
    Olivier, P., Cavarero, M.: Comparison between longitudinal tensile characteristics of thin and thick thermoset composite laminates: influence of curing conditions. Comput. Struct. 76, 125–137 (2000)CrossRefGoogle Scholar
  8. 8.
    Li, Y., Li, M., Gu, Y., Zhang, Z.: Numerical and experimental study of the bleeder flow in autoclave process. Appl. Compos. Mater. 18, 327–336 (2010)CrossRefGoogle Scholar
  9. 9.
    Hsiao, H.M., Daniel, I.M.: Effect of fiber waviness on stiffness and strength reduction of unidirectional composites under compressive loading. Compos. Sci. Technol. 56, 581–593 (1996)CrossRefGoogle Scholar
  10. 10.
    Chun, H., Shin, J., Daniel, I.M.: Effects of material and geometric nonlinearities on the tensile and compressive behavior of composite materials with fiber waviness. Compos. Sci. Technol. 61, 125–134 (2001)CrossRefGoogle Scholar
  11. 11.
    Lee, M.C.W., Payne, R.M., Kelly, D.W., Thomson, R.S.: Determination of robustness for a stiffened composite structure using stochastic analysis. Compos. Struct. 86, 78–84 (2008)CrossRefGoogle Scholar
  12. 12.
    Lee, M.C.W., Mikulik, Z., Kelly, D.W., Thomson, R.S., Degenhardt, R.: Robust design – a concept for imperfection insensitive composite structures. Compos. Struct. 92, 1469–1477 (2010)CrossRefGoogle Scholar
  13. 13.
    Olave, M., Vanaerschot, A., Lomov, S.V., Vandepitte, D.: Internal geometry variability of two woven composites and related variability of the stiffness. Polym. Compos. 1335–1350 (2012)Google Scholar
  14. 14.
    Huang, Y., Jin, K.K., Ha, S.K.: Effects of fiber arrangement on mechanical behavior of unidirectional composites. J. Compos. Mater. 42, 1851–1871 (2008)CrossRefGoogle Scholar
  15. 15.
    Mulle, M., Collombet, F., Olivier, P., Zitoune, R., Huchette, C., Laurin, F., Grunevald, Y.: Assessment of cure-residual strains through the thickness of carbon–epoxy laminates using FBGs part II: technological specimen. Compos. Part A Appl. Sci. Manuf. 40, 1534–1544 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Yves Davila
    • 1
  • Laurent Crouzeix
    • 1
  • Bernard Douchin
    • 1
  • Francis Collombet
    • 1
  • Yves-Henri Grunevald
    • 2
  1. 1.Université de Toulouse, INSA, UPS, Mines d’Albi, ISAE, ICA (Institut Clément Ader)ToulouseFrance
  2. 2.Composites Expertise & SolutionsCastanet TolosanFrance

Personalised recommendations