Applied Composite Materials

, Volume 23, Issue 2, pp 139–154 | Cite as

Three-Dimensional Static and Dynamic Analysis of a Composite Cruciform Structure Subjected to Biaxial Loading: A Discontinuum Approach

  • J. Navarro-Zafra
  • J. L. Curiel-Sosa
  • M. C. Serna Moreno
Article

Abstract

A three-dimensional structural integrity analysis using the eXtended Finite Element Method (XFEM) is considered for simulating the crack behaviour of a chopped fibre-glass-reinforced polyester (CGRP) cruciform specimen subjected to a quasi-static tensile biaxial loading. This is the first time this problem is accomplished for computing the stress intensity factors (SIFs) produced in the biaxially loaded area of the cruciform specimen. A static crack analysis for the calculation of the mixed-mode SIFs is carried out. SIFs are calculated for infinite plates under biaxial loading as well as for the CGRP cruciform specimens in order to review the possible edge effects. A ratio relating the side of the central zone of the cruciform and the crack length is proposed. Additionally, the initiation and evolution of a three-dimensional crack are successfully simulated. Specific challenges such as the 3D crack initiation, based on a principal stress criterion, and its front propagation, in perpendicular to the principal stress direction, are conveniently addressed. No initial crack location is pre-defined and an unique crack is developed. Finally, computational outputs are compared with theoretical and experimental results validating the analysis.

Keywords

Biaxial testing Chopped glass-reinforced composite Stress intensity factors 3D crack initiation and propagation 

Notes

Acknowledgments

This work has been financially supported by EPSRC Doctoral Training Grant.

References

  1. 1.
    Abdelaziz, Y., Hamouine, A.: A survey of the extended finite element. Comput. Struct. 86(11), 1141–1151 (2008)CrossRefGoogle Scholar
  2. 2.
    Anderson, T.L.: Fracture mechanics: fundamentals and applications. CRC press (2005)Google Scholar
  3. 3.
    Belytschko, T.: Nonlinear finite elements for continua and structures, p c2000. Chichester: John Wiley, Chichester (2000)Google Scholar
  4. 4.
    Belytschko, T., Black, T.: Elastic crack growth in finite elements 620(July 1998), 601–620 (1999)Google Scholar
  5. 5.
    Carneiro Molina, A.J., Curiel-Sosa, J.L.: A multiscale finite element technique for nonlinear multi-phase materials. Finite Elem. Anal. Des. 94, 64–80 (2015)CrossRefGoogle Scholar
  6. 6.
    Cox, B., Yang, Q.: In quest of virtual tests for structural composites. Science 314(5802), 1102–1107 (2006)CrossRefGoogle Scholar
  7. 7.
    Curiel-Sosa, J.L., Brighenti, R., Serna Moreno, M.C., Barbieri, E.: In: Beaumont, P., Soutis, C., Hodzic, A. (eds.) : Computational techniques for simulation of damage and failure on composites. Structural Integrity and Durability of Advanced Composites Woodhead Publishing (2015)Google Scholar
  8. 8.
    Curiel-Sosa, J.L., Karapurath, N.: Delamination modelling of GLARE using the extended finite element method. Compos. Sci. Technol. 72(7), 788–791 (2012)CrossRefGoogle Scholar
  9. 9.
    Curiel-Sosa, J.L., Petrinic, N., Wiegand, J.: A three-dimensional progressive damage model for fibre-composite materials. Mech. Res. Commun. 35(4), 219–221 (2008)CrossRefGoogle Scholar
  10. 10.
    Curiel-Sosa, J.L., Phaneendra, S., Munoz, J.J.: Modelling of mixed damage on fibre reinforced composite laminates subjected to low velocity impact, international journal of damage mechanics (2012)Google Scholar
  11. 11.
    Fries, T., Belytschko, T.: The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Methods Eng. 84(3), 253–304 (2010)Google Scholar
  12. 12.
    Giner, E., Sukumar, N., Tarancón, J., Fuenmayor, F.: An Abaqus implementation of the extended finite element method. Eng. Fract. Mech. 76(3), 347–368 (2009)CrossRefGoogle Scholar
  13. 13.
    Hibbitt, Karlsson, Sorensen: ABAQUS/Standard user’s manual, vol. 1, Hibbitt, Karlsson & Sorensen (2001)Google Scholar
  14. 14.
    Melenk, J.M., Babuṡka, I.: The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139(1), 289–314 (1996)CrossRefGoogle Scholar
  15. 15.
    Oden, J., Belytschko, T., Babuska, I., Hughes, T.: Research directions in computational mechanics. Comput. Methods Appl. Mech. Eng. 192(7-8), 913–922 (2003)CrossRefGoogle Scholar
  16. 16.
    Rooke, D., Cartwright, D.: of defence, G.B.M.: compendium of stress intensity factors. H.M.S.O, London (1976)Google Scholar
  17. 17.
    Serna Moreno, M.C., Curiel-Sosa, J.L., Navarro-Zafra, J., Martínez Vicente, J.L., López Cela, J.J.: Crack propagation in a chopped glass-reinforced composite under biaxial testing by means of XFEM, composite structures (2014)Google Scholar
  18. 18.
    Serna Moreno, M.C., López Cela, J.J.: Failure envelope under biaxial tensile loading for chopped glass-reinforced polyester composites. Compos. Sci. Technol. 72(1), 91–96 (2011)CrossRefGoogle Scholar
  19. 19.
    Serna Moreno, M.C., Martínez Vicente, J.L., López Cela, J.J.: Failure strain and stress fields of a chopped glass-reinforced polyester under biaxial loading. Compos. Struct. 103, 27–33 (2013)CrossRefGoogle Scholar
  20. 20.
    Soden, P.D., Hinton, M.J., Kaddour, A.S.: Biaxial test results for strength and deformation of a range of E-glass and carbon fibre reinforced composite laminates: failure exercise benchmark data. Compos. Sci. Technol. 62(12), 1489–1514 (2002)CrossRefGoogle Scholar
  21. 21.
    Soheil, S.M.: Extended finite element method for fracture analysis of structures, p c2008. Blackwell, Oxford (2008)Google Scholar
  22. 22.
    Sukumar, N., Moes, N., Moran, B., Belytschko, T.: Extended finite element method for three-dimensional crack modelling (November 1999) (2000)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • J. Navarro-Zafra
    • 1
  • J. L. Curiel-Sosa
    • 1
  • M. C. Serna Moreno
    • 2
  1. 1.Department of Mechanical EngineeringThe University of SheffieldSheffieldUK
  2. 2.Departamento de Mecánica Aplicada e Ingeniería de Proyectos, Escuela Técnica Superior de Ingenieros Industriales de Ciudad RealUniversidad de Castilla-La ManchaCiudad RealSpain

Personalised recommendations