Advertisement

Applied Composite Materials

, Volume 23, Issue 1, pp 87–100 | Cite as

Entangled Cross-Linked Fibres for an Application as Core Material for Sandwich Structures - Part II: Analytical Model

  • L. Mezeix
  • D. Poquillon
  • C. BouvetEmail author
Article

Abstract

Entangled cross-linked carbon, aramid and glass fibres were recently produced by epoxy spraying for an application as core material for sandwich panel. The Young’s moduli in compression and tension have been previously measured and briefly summarized in this paper. To optimize the core structure, modelling of these properties has been achieved in the present paper. The cross-link fibres have a random orientation and the stiffness of the epoxy joint is modelled by a torsion spring. A parallel model is chosen for homogenisation. It was found that the experimentally estimated stiffness of these materials fits fairly well with the modelled ones.

Keywords

Entangled fibres Mechanical properties Modelling Sandwich structure Core material 

Notes

Acknowledgments

Financial support for this work was obtained thanks to funding provided by the ANR (Agence National pour la Recherche) on the MANSART project.

References

  1. 1.
    Steeves, C.A., Fleck, N.A.: Material selection in sandwich beam construction. Scr. Mater. 50, 1335–1339 (2004)CrossRefGoogle Scholar
  2. 2.
    Allen, H.G.: Analysis and Design of Structural Sandwich Panels. Pergamon Press, Oxford (1969)Google Scholar
  3. 3.
    Zenkert, D.: The Handbook of Sandwich Construction. Chameleon Press Ltd, London (1997)Google Scholar
  4. 4.
    Vinson J.R.: The Behaviour of Sandwich Structures of Isotropic and Composite Materials. Technomic Publishing Co (1999)Google Scholar
  5. 5.
    Mezeix L., Poquillon P., Bouvet C.: Entangled cross-linked fibres for an application as core material for sandwich structures: part I: experimental investigation. Compos. Struct. (2010)Google Scholar
  6. 6.
    Golosnoy, I.O., Cockburn, A., Clyne, T.W.: Optimisation of metallic fibre network materials for compact heat exchangers. Adv. Eng. Mater. 10(3), 210–218 (2008)CrossRefGoogle Scholar
  7. 7.
    Zhang, B.M., Zhao, S.Y., He, X.D.: Experimental and theoretical studies on high-temperature thermal properties of fibrous insulation. J. Quant. Spectrosc. Radiat. Transf. 109(7), 1309–1324 (2008)CrossRefGoogle Scholar
  8. 8.
    Markaki, A.E., Clyne, T.W.: Mechanics of thin ultra-light stainless steel sandwich sheet material: part I. Stiffness. Acta Mater. 51(5), 1341–1350 (2003)CrossRefGoogle Scholar
  9. 9.
    Markaki, A.E., Clyne, T.W.: Mechanics of thin ultra-light stainless steel sandwich sheet material: part II. Resistance to delamination. Acta Mater. 51(5), 1351–1375 (2003)CrossRefGoogle Scholar
  10. 10.
    Dean J. et al.: Energy absorption during projectile perforation of lightweight sandwich panels with metallic fibre cores. International Conference of Sandwich Structure 8th (ICSS8), Porto, 6–8 May 2008Google Scholar
  11. 11.
    Masse, J.P., Bréchet, Y., Salvo, L., Bouaziz, O.: Mechanical Behavior of Non Sintered and Sintered Steel Wood. Material Research Society, Hong Kong (2008)Google Scholar
  12. 12.
    Markaki, A.E., Clyne, T.W.: Magneto-mechanical actuation of bonded ferromagnetic fibre arrays. Acta Mater. 53, 877–889 (2005)CrossRefGoogle Scholar
  13. 13.
    Gustavsson R.: Patent WO 98/01295, 15th January, AB Volvo, (1998)Google Scholar
  14. 14.
    Mezeix, L., Bouvet, C., Julitte, H., Poquillon, P.: Mechanical behaviour of entangled fibers and entangled cross-linked fibers during compression. J. Mater. Sci. 44(14), 3652–3661 (2009)CrossRefGoogle Scholar
  15. 15.
    Shahdin, A., Mezeix, L., Bouvet, C., Morlier, J., Gourinat, Y.: Fabrication and mechanical testing of glass fiber entangled sandwich beams: a comparison with honeycomb and foam sandwich beams. Compos. Struct. 90(4), 404–412 (2009)CrossRefGoogle Scholar
  16. 16.
    Shahdin, A., Mezeix, L., Bouvet, C., Morlier, J., Gourinat, Y.: Monitoring the effects of impact damages on modal parameters in carbon fiber entangled sandwich beams. Eng. Struct. 31(12), 2833–2841 (2009)CrossRefGoogle Scholar
  17. 17.
    Gibson, L.J., Ashby, M.F.: Cellular Solids, Structure and Properties, 2nd edn. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  18. 18.
    Zhou, D., Stronge, W.J.: Mechanical properties of fibrous core sandwich panels. Int. J. Mech. Sci. 47(4–5), 775–798 (2005)CrossRefGoogle Scholar
  19. 19.
    Ducheyne, P., Aernoudt, E., De Meester, P.: The mechanical behaviour of porous austenitic stainless steel fibre structures. J. Mater. Sci. 13, 2650–2658 (1978)CrossRefGoogle Scholar
  20. 20.
    Delannay, F.: Elastic model of an entangled network of interconnected fibres accounting for negative Poisson ratio behaviour and random triangulation. Int. J. Solids Struct. 42(8), 2265–2285 (2005)CrossRefGoogle Scholar
  21. 21.
    Underwood, E.E.: Quantitative Stereology. Addison Wesley Publishing Company, Reading (1970)Google Scholar
  22. 22.
    Toll, S.: Packing mechanics of fiber reinforcements. Polym. Eng. Sci. 38, 1337–1350 (1998)CrossRefGoogle Scholar
  23. 23.
    Dodson, C.T.J.: Fibre crowding, fiber contacts and fiber flocculation. Tappi J. 79(9), 211–216 (1996)Google Scholar
  24. 24.
    Phillipse, A.P.: The random contact equation and its implications for (colloidal) rods in packings, suspensions, and anisotropic powders. Langmuir 12(5), 1127–1133 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Université de Toulouse, CIRIMAT, INPT-ENSIACETToulouse Cedex 4France
  2. 2.Université de Toulouse, ICA, ISAEToulouseFrance

Personalised recommendations