Applied Composite Materials

, Volume 22, Issue 6, pp 599–621 | Cite as

Modelling Strategies for Predicting the Residual Strength of Impacted Composite Aircraft Fuselages

  • Frederic Lachaud
  • Christine Espinosa
  • Laurent Michel
  • Pierre Rahme
  • Robert Piquet


Aeronautic Certification rules established for the metallic materials are not convenient for the composite structures concerning the resistance against impact. The computer-based design is a new methodology that is thought about to replace the experimental tests. It becomes necessary for numerical methods to be robust and predictive for impact. Three questions are addressed in this study: (i) can a numerical model be “mechanically intrinsic” to predict damage after impact, (ii) can this model be the same for a lab sample and a large structure, and (iii) can the numerical model be predictive enough to predict the Compression After Impact (CAI)? Three different computational strategies are used and compared: a Cohesive Model (CM), a Continuous Damage Model (CDM) coupling failure modes and damage, and a Mixed Methodology (MM) using the CDM for delamination initiation and the CM for cracks propagation. The first attempts to use the Smooth Particle Hydrodynamics method are presented. Finally, impact on a fuselage is modelled and a numerical two-stage strategy is developed to predict the CAI.


Composite Materials Delamination Crack Propagation Mixed Mode Compression After Impact Smooth Particle Hydrodynamics 



The authors are grateful of Higher Education Commission of Pakistan for partial funding. Special thanks are also extended to IMPETUS Afea France and all the students and technical staff of ISAE for their valuable input towards numerical and experimental aspects, respectively.


  1. 1.
    Abrate, S.: Impact on composite structures. Cambridge University Press, (1998)Google Scholar
  2. 2.
    Richardson, M.O.W., Wisheart, M.J.Y.: Review of low-velocity impact properties of composite materials. Compos A 27A, 1123–1131 (1996)CrossRefGoogle Scholar
  3. 3.
    Reifsnider, K.L., Case, S.W.: Damage tolerance & durability in material systems. Wiley-Intersciences, ISBN-10 0471152994 (2002)Google Scholar
  4. 4.
    Shi, Y., Pinna, C., Soutis, C.: Modelling impact damage in composite laminates: a simulation of intra- and inter-laminar cracking. Compos Struct 114(Aug), 10–19 (2014)CrossRefGoogle Scholar
  5. 5.
    Mi, Y., Crisfield, M., Davies, G., Hellweg, H.: Progressive delamination using interface elements. J Compos Mater 32, 1246–1272 (1998)CrossRefGoogle Scholar
  6. 6.
    Alfano, G., Crisfield, M.: Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Methods Eng 77(2), 111–70 (2001)Google Scholar
  7. 7.
    Reedy Jr., E.D., Mello, F.J., Guess, T.R.: Modeling the initiation and growth of delaminations in composite structures. J Compos Mater 31(8), 812–831 (1997)CrossRefGoogle Scholar
  8. 8.
    Windisch, M., Sun, D.-Z., Memhard, D., Siegele, D.: Defect tolerance assessment of Ariane 5 structures on the basis of damage mechanics material modelling. Eng Fract Mech 76, 59–73 (2009)CrossRefGoogle Scholar
  9. 9.
    Bertolini, J., Castanié, B., Barrau, J.J., Navarro, J.P.: Multi-level analysis of skin/stringer debonding. ICCM17, Edimburgh, 27–31 July, United Kingdom, (2009)Google Scholar
  10. 10.
    Chen, C., Espinosa, C., Michel, L., Lachaud, F.: A numerical approach for analysing post-impact behaviour of composite laminate under in-plane compression. ECCM 15, Venice, 24–28 June, Italy, (2012)Google Scholar
  11. 11.
    Prombut, P., Michel, L., Lachaud, F., Barrau, J.J.: Delamination of multidirectional composite laminates at 0°/θ° ply interfaces. Eng Fract Mech 73(16), 11 (2006)CrossRefGoogle Scholar
  12. 12.
    Tay, T.E.: Characterization and analysis of delamination fracture in composites, an overview of developments from 1990 to 2001. Appl Mech Rev 56(1), 1–32 (2001)CrossRefGoogle Scholar
  13. 13.
    Lachaud, F.: Contribution à l’analyse multi échelle du comportement non linéaire matériau des structures composites. Habilitation à Diriger des Recherches, Université de Toulouse. France. (2011)
  14. 14.
    Ilyas M.: Damage modelling of carbon epoxy laminated composites submitted to impact laoding. PhD thesis, Université de Toulouse, ISAE, France, (2010)Google Scholar
  15. 15.
    Bouvet, C., Castanie, B., Bizeul, M., Barrau, J.J.: Low velocity impact modeling in laminate composite panels with discrete interface elements. Int J Solids Struct 46, 2809–2821 (2009)CrossRefGoogle Scholar
  16. 16.
    Lachaud, F., Espinosa, C., Michel, L., Rahme, P., Piquet, R.: Modelling strategies for simulating delamination and matrix cracking in composites laminates. Appl Compos Mater (2014). doi: 10.1007/s10443-014-9413-4 Google Scholar
  17. 17.
    Shi, Y., Pinna, C., Soutis, C.: Interface cohesive elements to model matrix crack evolution in composite laminates. Appl Compos Mater 21, 57–70 (2014)CrossRefGoogle Scholar
  18. 18.
    Ilyas, M., Limido, J., Lachaud, F., Espinosa, C., Salaun, M.: Modélisation SPH 3D de l’impact basse vitesse sur plaque composite. 19ème Congrès Français de Mécanique, Marseille. France, (2009)Google Scholar
  19. 19.
    Ilyas, M., Espinosa, Ch., Lachaud, F., Salaün, M.: Dynamic delamination using cohesive finite elements. 9th International DYMAT conference, 7–11 September, Brussels, Belgium, (2009)Google Scholar
  20. 20.
    Guinard, S., Allix, O., Guédra-Degeorges, D., Vinet, A.: A 3D damage analysis of low-velocity impacts on laminated composites. Compos Sci Technol 62, 585–589 (2002)CrossRefGoogle Scholar
  21. 21.
    Aboissière, J.: Propagation de dommages d’impact dans un matériau composite stratifié à fibres de carbone et résine époxyde. PhD Dissertation, Université de Toulouse, France, (2003)Google Scholar
  22. 22.
    Guédra-Degeorges, D.: Recent advances to assess mono- and multi-delamaminations behaviour of aerospace composites. Compos Sci Technol 66, 796–806 (2006)CrossRefGoogle Scholar
  23. 23.
    Suemasu, H., Sasaki, W., Ishikawa, T., Aoki, Y.: A numerical study on compression behavior of composites plates with multiple circular delaminations considering delamination propagation. Compos Sci Technol 68, 2562–2567 (2008)CrossRefGoogle Scholar
  24. 24.
    Craven, R., Iannucci, L., Olsson, R.: Delamination buckling: a finite element study with realistic delamination shapes, multiple delaminations and fibre fracture cracks. Compos A: Appl Sci Manuf 41(5), 684–692 (2010)CrossRefGoogle Scholar
  25. 25.
    Liu, G. R., Liu, M. B.: Smoothed particle hydrodynamics—a Meshfree particle method. World Scientific Publishing Co, (2003)Google Scholar
  26. 26.
    Silvestrov, V.V., Plastinin, A.V., Gorshkov, N.N.: Hypervelocity impact on laminate composite panels. Int J Impact Eng 17, 751–762 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Frederic Lachaud
    • 1
  • Christine Espinosa
    • 1
  • Laurent Michel
    • 1
  • Pierre Rahme
    • 2
  • Robert Piquet
    • 1
  1. 1.Université de Toulouse, ISAE ICA (Institut Clément Ader)Toulouse Cedex4France
  2. 2.Faculty of Engineering, Mechanical Engineering DepartmentLebanese UniversityRoumiehLebanon

Personalised recommendations