Applied Composite Materials

, Volume 22, Issue 4, pp 377–403 | Cite as

Modelling Strategies for Simulating Delamination and Matrix Cracking in Composite Laminates

  • Frederic Lachaud
  • Christine Espinosa
  • Laurent Michel
  • Pierre Rahme
  • Robert Piquet


The composite materials are nowadays widely used in aeronautical domain. These materials are subjected to different types of loading that can damage a part of the structure. This diminishes the resistance of the structure to failure. In this paper, matrix cracking and delamination propagation in composite laminates are simulated as a part of damage. Two different computational strategies are developed: (i) a cohesive model (CM) based on the classical continuum mechanics and (ii) a continuous damage material model (CDM) coupling failure modes and damage. Another mixed methodology (MM) is proposed using the continuous damage model for delamination initiation and the cohesive model for 3D crack propagation and mesh openings. A good agreement was obtained when compared simple characterization tests and corresponding simulations.


Composite materials Delamination Finite element analysis Crack propagation Matrix cracking Mixed mode 



The authors are grateful of Higher Education Commission of Pakistan for partial funding. Special thanks are also extended to IMPETUS Afea France as well as to all students and technical staff of ISAE for their valuable input towards numerical and experimental aspects, respectively.


  1. 1.
    Gaudin, J., Mahé, M., Grihon, S., Le-Roux, O.: Design optimization of composite Structures—AIRBUS Challenges in MAAXIMUS. Workshop Giens 2009, 6 pp (2009)Google Scholar
  2. 2.
    Delsart, D., Joly, D., Mahé, M., Winkelmuller, G.: Evaluation of finite element modeling methodologies for the design of crashworthy composite commercial aircraft fuselage. 24th International Congress of the Aeronautical Sciences, Yokohama, Japan, (2004)Google Scholar
  3. 3.
    Fualdes, C., Morteau, E.: Composites @ Airbus Damage tolerance Methodology. FFA Workshop for the damage tolerance and maintenance. Composite Damage Tolerance & Maintenance Workshop, July 19–21, Chicago, IL, (2006). Accessed 10 Jan 2012
  4. 4.
    Windisch, M., Sun, D.-Z., Memhard, D., Siegele, D.: Defect tolerance assessment of Ariane 5 structures on the basis of damage mechanics material modelling. Eng. Fract. Mech. 76, 59–73 (2009)CrossRefGoogle Scholar
  5. 5.
    Bertolini, J., Castanié, B., Barrau, J.J., Navarro, J.P.: Multi-level analysis of skin/stringer debonding. ICCM17, Edimburgh, 27–31 July, United Kingdom, (2009)Google Scholar
  6. 6.
    Kashtalyan, M., Soutis, C.: Analysis of composite laminates with inter- and interlaminar damage. Prog. Aerosp. Sci. 41, 152–173 (2005)CrossRefGoogle Scholar
  7. 7.
    Puck, A., Schurmann, H.: Failure analysis of FRP laminates by means of physically based phenomenological models. Compos. Sci. Technol. 58, 1045–1067 (1998)CrossRefGoogle Scholar
  8. 8.
    Pollayi, H., Yu, W.: Modeling matrix cracking in composite rotor blades within VABS framework. Compos. Struct. 100, 62–76 (2014)CrossRefGoogle Scholar
  9. 9.
    Rebiere, J.L., Gamby, D.: A criterion for modeling initiation and propagation of matrix cracking and delamination in cross-ply laminates. Compos. Sci. Technol. 64, 2239–2250 (2004)CrossRefGoogle Scholar
  10. 10.
    Pavia, F., Letertre, A., Curtin, W.A.: Prediction of first matrix cracking in micro/nanohybrid brittle matrix composites. Compos. Sci. Technol. 70, 916–921 (2010)CrossRefGoogle Scholar
  11. 11.
    Van der Meer, F.P., Sluys, L.J.: Mesh-independent modeling of both distributed and discrete matrix cracking in interaction with delamination in composites. Eng. Fract. Mech. 77, 719–735 (2010)CrossRefGoogle Scholar
  12. 12.
    Maimi, P., Camanho, P.P., Mayugo, J.A., Turon, A.: Matrix cracking and delamination in laminated composites. Part II: Evolution of crack density and delamination. Mech. Mater. 43, 194–211 (2011)CrossRefGoogle Scholar
  13. 13.
    Shi, Y., Pinna, C., Soutis, C.: Interface cohesive elements to model matrix crack evolution in composite laminates. Appl. Compos. Mater. 21, 57–70 (2014)CrossRefGoogle Scholar
  14. 14.
    Alvarez, D., Blackman, B.R.K., Guild, F.J., Kinloch, A.J.: Mode I fracture in adhesively-bonded joints: A mesh-size independent modeling approach using cohesive elements. Eng. Fract. Mech. 115, 73–95 (2014)CrossRefGoogle Scholar
  15. 15.
    Borg, R., Nilsson, L., Simonsson, K.: Simulating DCB, ENF and MMB experiments using shell elements and a cohesive zone model. Compos. Sci. Technol. 64, 269–278 (2004)CrossRefGoogle Scholar
  16. 16.
    Abrate, S.: Impact on Composite Structures. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  17. 17.
    Richardson, M.O.W., Wisheart, M.J.Y.: Review of low-velocity impact properties of composite materials. Compos. Part A 27A, 1123–1131 (1996)CrossRefGoogle Scholar
  18. 18.
    Lemaitre, J., Chaboche, J.-L.: Mécanique des Matériaux Solides. Dunod, Paris (1988)Google Scholar
  19. 19.
    Liu, G.R., Liu, M.B.: Smoothed Particle Hydrodynamics—A Meshfree Particle Method. World Scientific Publishing Co, Singapore (2003)Google Scholar
  20. 20.
    Shi, Y., Soutis, C.: A finite element analysis of impact damage in composite laminates. RAeS Aeronaut. J. 116(1186), 1331–1346 (2012)Google Scholar
  21. 21.
    Shi, Y., Swait, T., Soutis, C.: Modelling damage evolution in composite laminates subjected to low velocity impact. Compos. Struct. 94(9), 2902–2913 (2012)CrossRefGoogle Scholar
  22. 22.
    De Florio, F.: Airworthiness an Introduction to Aircraft Certification. Butterworth-Heinemann Ed., 1st Edition, Oxford (2006)Google Scholar
  23. 23.
    Farahmand, B. (ed.): Virtual Testing and Predictive Modeling for Fatigue and Fracture Mechanics Allowables. Bahram Farahmand Editor, Springer, ISBN 978-0-387-95923-8 3, pp 459 (2009)Google Scholar
  24. 24.
    ASME: Damage Tolerance in Aricraft Structures. STP 486, ISBN O-8031-0072-8 (1971).Google Scholar
  25. 25.
    Reedy Jr., E.D., Mello, F.J., Guess, T.R.: Modeling the initiation and growth of delaminations in composite structures. J. Compos. Mater. 31(8), 812–831 (1997)CrossRefGoogle Scholar
  26. 26.
    Reifsnider, K.L., Case, S.W.: Damage Tolerance & Durability in Material Systems. Wiley-Intersciences, ISBN-10 0471152994 (2002)Google Scholar
  27. 27.
    Pinho, S.T., Iannucci, L., Robinson, P.: Formulation and implementation of decohesion elements in an explicit finite element code. Compos. Part A 37, 778–789 (2006)CrossRefGoogle Scholar
  28. 28.
    Alfano, G., Crisfield, M.: Finite element interface models for the delamination analysis of laminated composites: Mechanical and computational issues. Int. J. Numer. Methods Eng. 77(2), 111–170 (2001)Google Scholar
  29. 29.
    Mi, Y., Crisfield, M., Davies, G., Hellweg, H.: Progressive delamination using interface elements. J. Compos. Mater. 32, 1246–1272 (1998)CrossRefGoogle Scholar
  30. 30.
    Cazes, F., Simatos, A., Coret, M., Combescure, A.: A cohesive zone model which is energetically equivalent to a gradient-enhanced coupled damage-plasticity model. Eur. J. Mech. A Solids 29, 976–989 (2010)CrossRefGoogle Scholar
  31. 31.
    Ilyas, M., Limido, J., Lachaud, F., Espinosa, C., Salaun, M.: Modélisation SPH 3D de l’impact basse vitesse sur plaque composite. 19ème Congrès Français de Mécanique, Marseille. France, (2009)Google Scholar
  32. 32.
    Turon, A., Camanho, P.P., Costa, J., Renart, J.: Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness. Compos. Struct. 92, 1857–1864 (2010)CrossRefGoogle Scholar
  33. 33.
    Lachaud, F.: Contribution à L’analyse Multi Échelle du Comportement Non Linéaire Matériau des Structures Composites. Habilitation à Diriger des Recherches, Université de Toulouse, France (2011). Google Scholar
  34. 34.
    Prombut, P., Michel, L., Lachaud, F., Barrau, J.J.: Delamination of multidirectional composite laminates at 0°/θ° ply interfaces. Eng. Fract. Mech. 73(16), 11 (2006)CrossRefGoogle Scholar
  35. 35.
    Ilyas, M.: Damage modelling of carbon epoxy laminated composites submitted to impact laoding. PhD thesis, Université de Toulouse, ISAE, France, (2010)Google Scholar
  36. 36.
    Allix, O., Blanchard, L.: Mesomodeling of delamination: Towards industrial applications. Compos. Sci. Technol. 66, 731–744 (2006)CrossRefGoogle Scholar
  37. 37.
    Lachaud, F.: Prévision de L’endommagement de Composites Stratifiés Carbone-Epoxy Sous Chargement de Type Impact. 17ème Journée Nationales sur les Composites, Poitiers, 15–17 Juin. France, (2011)Google Scholar
  38. 38.
    Allix, O., Ladevèze, P., Corigliano, A.: Damage analysis of interlaminar fracture specimens. Compos. Struct. 31, 61–74 (1995)CrossRefGoogle Scholar
  39. 39.
    Benzeggagh, M.L., Kenane, M.: Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Compos. Sci. Technol. 56, 439–449 (1996)CrossRefGoogle Scholar
  40. 40.
    Hamitouche, L., Trafaoui M., Vautrin A.: Modélisation du délaminage par la méthode de la zone cohésive et problèmes d’instabilité, 16ème Journées Nationales sur les Composites, (2009)Google Scholar
  41. 41.
    Matzenmiller, A., Lubliner, R.L., Taylor, A.: A constitutive model for anisotropic damage in fiber composites. Mech. Mater. 20, 125–152 (1995)CrossRefGoogle Scholar
  42. 42.
    Lubineau, G., Ladeveze, P.: Construction of a micromechanics-based intralaminar mesomodel, and illustrations in ABAQUS/Standard. Comput. Mater. Sci. 43, 137–145 (2008)CrossRefGoogle Scholar
  43. 43.
    Bouvet, C.: Etude de l’endommagement dans les structures composites. Mémoire d’Habilitation à Diriger les Recherches (2009)Google Scholar
  44. 44.
    Collombet, F., Lalbin, X., Lataillade, J.L.: Impact behavior of laminated composites: Physical basis for finite element analysis. Compos. Sci. Technol. 58, 463–478 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Frederic Lachaud
    • 1
  • Christine Espinosa
    • 1
  • Laurent Michel
    • 1
  • Pierre Rahme
    • 2
  • Robert Piquet
    • 1
  1. 1.ISAE ICA (Institut Clément Ader)Université de ToulouseToulouse Cedex 4France
  2. 2.Mechanical Engineering Department, Faculty of EngineeringNotre Dame UniversityZouk MosbehLebanon

Personalised recommendations