Advertisement

Applied Composite Materials

, Volume 21, Issue 6, pp 805–825 | Cite as

Effect of Processing Conditions on Fracture Resistance and Cohesive Laws of Binderfree All-Cellulose Composites

  • S. GoutianosEmail author
  • R. Arévalo
  • B. F. Sørensen
  • T. Peijs
Article

Abstract

The fracture properties of all-cellulose composites without matrix were studied using Double Cantilever Beam (DCB) sandwich specimens loaded with pure monotonically increasing bending moments, which give stable crack growth. The experiments were conducted in an environmental scanning electron microscope to a) perform accurate measurements of both the fracture energy for crack initiation and the fracture resistance and b) observe the microscale failure mechanisms especially in the the wake of the crack tip. Since the mechanical behaviour of the all-cellulose composites was non-linear, a general method was first developed to obtain fracture resistance values from the DCB specimens taking into account the non-linear material response. The binderfree all-cellulose composites were prepared by a mechanical refinement process that allows the formation of intramolecular bonds between the cellulose molecules during the drying process. Defibrilation of the raw cellulose material is done in wet medium in a paper-like process. Panels with different refining time were tested and it was found than an increase in fibre fibrillation results in a lower fracture resistance.

Keywords

All-cellulose Binderfree Fracture resistance Cohesive laws Bridging mechanisms Non-linear response 

Notes

Acknowledgments

The authors wish to thank Ove Rasmussen (Department of Physics, Technical University of Denmark) for assistance with specimen preparation. RA would like to acknowledge financial support through the Technology Strategy Board (TSB) funded REFLECT project. BFS was supported by the Danish Centre for Composite Structures and Materials for Wind Turbines (DCCSM), Grant No. 09-067212 from the Danish Strategic Research Council.

References

  1. 1.
    Heijenrath, R., Peijs, T.: Adv. Compos. Lett. 5, 81 (1996)Google Scholar
  2. 2.
    Garkhail, S.K., Heijenrath, R.W.H., Peijs, T.: Appl. Compos. Mater. 7, 351 (2000)CrossRefGoogle Scholar
  3. 3.
    Van de Weyenberg, I., Ivens, J., De Coster, A., Kino, B., Baetens, E., Verpoest, I.: Compos. Sci. Technol. 63, 1241 (2003)CrossRefGoogle Scholar
  4. 4.
    Van de Velde, K., Kiekens, P.: Compos. Struct. 62, 443 (2003)CrossRefGoogle Scholar
  5. 5.
    Bledzki, A.K., Fink, H.P., Specht, K.: J. Appl. Polym. Sci. 93, 2150 (2004)CrossRefGoogle Scholar
  6. 6.
    Goutianos, S., Peijs, T., Nystrom, B., Skrifvars, M.: Appl. Compos. Mater. 13, 199 (2006)CrossRefGoogle Scholar
  7. 7.
    Berglund, L.A., Peijs, T.: MRS Bull. 35, 201 (2010)CrossRefGoogle Scholar
  8. 8.
    Singleton, A.C.N., Baillie, C.A., Beaumont, P.W.R., Peijs, T.: Compos. B: Eng. 36, 245 (2005)CrossRefGoogle Scholar
  9. 9.
    Bos, H.L., Donald, A.M.: J. Mater. Sci. 34, 3029 (1999)CrossRefGoogle Scholar
  10. 10.
    Hornsby, P.R., Hinrichsen, E., Tarverdi, K.: J. Mater. Sci. 32, 1009 (1997)CrossRefGoogle Scholar
  11. 11.
    Gassan, J., Bledzki, A.K.: Appl. Compos. Mater. 7, 373 (2000)CrossRefGoogle Scholar
  12. 12.
    Van den Oever, M., Bos, H., Van Kemenade, M.: Appl. Compos. Mater. 7, 387 (2000)CrossRefGoogle Scholar
  13. 13.
    Goutianos, S., Peijs, T.: Adv. Compos. Lett. 12, 237 (2003)Google Scholar
  14. 14.
    Bos, H.L.: The Potential of Flax Fibres as Reinforcement for Composite Materials. Ph.D. thesis, Technical University of Eindhoven (2004)Google Scholar
  15. 15.
    Shen, L., Patel, M.K.: J. Polym. Environ. 16, 154 (2008)CrossRefGoogle Scholar
  16. 16.
    Peijs, T.: Mater. Today 6, 30 (2003)CrossRefGoogle Scholar
  17. 17.
    Nishino, T., Matsuda, I., Hirao, K.: Macromolecules 37, 7683 (2004)CrossRefGoogle Scholar
  18. 18.
    Gindl, W., Keckes, J.: Polymer 46, 10221 (2005)Google Scholar
  19. 19.
    Soykeabkaew, N., Nishino, T., Peijs, T., Compos. A: Appl. Sci. Manuf. 40, 321 (2009)Google Scholar
  20. 20.
    Arévalo, R., Picot, O.T., Wilson, R.M., Soykeabkaew, N., Peijs, T.: J. Biobased Mater. Bioenergy 4, 129 (2010)CrossRefGoogle Scholar
  21. 21.
    Ward, I.M., Hine, P.J.: Polym. Eng. Sci. 37, 1809 (1997)CrossRefGoogle Scholar
  22. 22.
    Ward, I.M., Hine, P.J.: Polymer 45, 1423 (2004)CrossRefGoogle Scholar
  23. 23.
    Cabrera, N., Alcock, B., Loos, J., Peijs, T.: Proc. IME L J. Mater. Des. Appl. 218, 145 (2004)Google Scholar
  24. 24.
    Alcock, B., Cabrera, N.O., Barkoula, N.M., Loos, J., Peijs, T., Compos. A: Appl. Sci. Manuf. 37, 716 (2006)Google Scholar
  25. 25.
    Grunert, M., Winter, W.T.: J. Polym. Environ. 10, 27 (2002)CrossRefGoogle Scholar
  26. 26.
    Gindl, W., Keckes, J.: Compos. Sci. Technol. 64, 2407 (2004)CrossRefGoogle Scholar
  27. 27.
    Qin, C., Soykeabkaew, N., Xiuyuan, N., Peijs, T.: Carbohydrate Polym. 71, 458 (2008)CrossRefGoogle Scholar
  28. 28.
    Zhao, Q., Yam, R., Zhang, B.Q., Yang, Y.K., Cheng, X.J., Li, R.: Cellulose 16, 217 (2009)CrossRefGoogle Scholar
  29. 29.
    Nishino, T., Arimoto, N.: Biomacromolecules 8, 2712 (2007)CrossRefGoogle Scholar
  30. 30.
    Soykeabkaew, N., Arimoto, N., Nishino, T., Peijs, T.: Compos. Sci. Technol. 68, 2201 (2008)CrossRefGoogle Scholar
  31. 31.
    Soykeabkaew, N., Sian, C., Gea, S., Nishino, T., Peijs, T.: Cellulose 16, 435 (2009)CrossRefGoogle Scholar
  32. 32.
    Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J., Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A.N., Mangalam, A., Simonsen, J., Benight, A.S., Bismarck, A., Berglund, L.A., Peijs, T.: J. Mater. Sci. 45(1), 1 (2010)CrossRefGoogle Scholar
  33. 33.
    Arévalo, R.: Preparation, Development and Characterisation of Binder-Free All-Cellulose Composites. PhD thesis, Queen Mary University of London (2014)Google Scholar
  34. 34.
    Iguchi, M., Yamanaka, S., Budhiono, A.: J. Mater. Sci. 35, 261 (2000)CrossRefGoogle Scholar
  35. 35.
    Gea, S., Bilotti, E., Reynolds, C.T., Soykeabkeaw, N., Peijs, T.: Mater. Lett. 64, 901 (2010)CrossRefGoogle Scholar
  36. 36.
    Wu, Q., Henriksson, M., Liu, X., Berglund, L.A.: Biomacromolecules 8, 3687 (2007)CrossRefGoogle Scholar
  37. 37.
    Dopfner, H., Ernegg, M., Bramsteidl, R.: US patent 6379594 (2005)Google Scholar
  38. 38.
    Heyden, S., Gustafsson, P.J.: J. Pulp Paper Sci. 24, 160 (1998)Google Scholar
  39. 39.
    Kettunen, H., Niskanen, K.: J. Pulp Paper Sci. 26, 35 (2000)Google Scholar
  40. 40.
    Isaksson, P., Gradin, P.A., Kulachenko, A.: Int. J. Solids Struct. 43, 713–726 (2006)CrossRefGoogle Scholar
  41. 41.
    Isaksson, P., Hȧgglund, R.: Int. J. Solids Struct. 44, 6135 (2007)CrossRefGoogle Scholar
  42. 42.
    Broek, D.: Elementary Engineering Fracture Mechanics, 4th edn. Dordrecht, Boston, Martinus Nijhoff (1986)CrossRefGoogle Scholar
  43. 43.
    Suo, Z., Bao, G., Fan, B.: J. Mech. Phys. Solids 40, 1 (1992)CrossRefGoogle Scholar
  44. 44.
    Dugdale, D.S.: J. Mech. Phys. Solids 8, 100 (1960)CrossRefGoogle Scholar
  45. 45.
    Barenblatt, G.I.: Adv. Appl. Mech. 77, 55 (1962)CrossRefGoogle Scholar
  46. 46.
    Hillerborg, A.: Int. J. Fract. 51, 95 (1991)Google Scholar
  47. 47.
    Rice, J.R.: J. Appl. Mech. 35, 379 (1968)CrossRefGoogle Scholar
  48. 48.
    Thouless, M., Kafkalidis, M., Ward, S., Bankowski, Y.: Scripta Materialia 37, 1081 (1997)CrossRefGoogle Scholar
  49. 49.
    Hutchinson, J.W.: On steady Quasi-Static Crack Growth. Tech. rep, Harvard University (1974)Google Scholar
  50. 50.
    Budiansky, B.: J. Appl. Mech. 81, 259 (1959)Google Scholar
  51. 51.
    Sørensen, B.F., Horsewell, A., Jøgensen, O., Kumar, A.N., Engbæk, P.: J. Am. Ceram. Soc. 81(3), 661 (1998)CrossRefGoogle Scholar
  52. 52.
    Goutianos, S., Frandsen, H.L., Sørensen, B.F.: J. Eur. Ceram. Soc. 30, 3173 (2010)CrossRefGoogle Scholar
  53. 53.
    Bao, G., Ho, S., Suo, Z.: Int. J. Solids Struct. 29(9), 1105 (1992)CrossRefGoogle Scholar
  54. 54.
    Li, V.C., Ward, R.J.: In: Mihashi, H., Takahashi, H., Wittmann F.H. (eds.) Fracture Toughness and Fracture Energy-Testing Methods for Concrete and Rocks, pp.183–195. A.A. Balkema, Rotterdam (1989)Google Scholar
  55. 55.
    Kruzic, J.J., Kuskowski, J., Ritchie, R.O.: J. Biomed. Mater. Res. Part A 74A(3), 461 (2005)CrossRefGoogle Scholar
  56. 56.
    Hutchinson, J.W., Suo, Z.: Adv. Appl. Mech. 29, 63 (1992)CrossRefGoogle Scholar
  57. 57.
    Sørensen, B.F., Brethe, P., Skov-Hansen, P.: J. Eur. Ceram. Soc. 16, 1021 (1996)CrossRefGoogle Scholar
  58. 58.
    Fernberg, S.P., Berglund, L.A.: Compos. Sci. Technol. 61, 2445 (2001)CrossRefGoogle Scholar
  59. 59.
    Sørensen, B.F., Kirkegaard, P.: Eng. Fract. Mech. 73, 2642 (2006)CrossRefGoogle Scholar
  60. 60.
    Spearing, S.M., Evans, A.G.: Acta Metallurgica et Materialia 40, 2191 (1992)CrossRefGoogle Scholar
  61. 61.
    Bao, G., Suo, Z.: Appl. Mech. Rev. 45, 355 (1992)CrossRefGoogle Scholar
  62. 62.
    Feih, S., Wei, J., Kingshott, P., Sørensen, B.F., Compos. A: Appl. Sci. Manuf. 36, 245 (2005)Google Scholar
  63. 63.
    Tvergaard, V., Hutchinson, J.W.: J. Mech. Phys. Solids 40, 1377 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • S. Goutianos
    • 1
    Email author
  • R. Arévalo
    • 2
  • B. F. Sørensen
    • 1
  • T. Peijs
    • 2
  1. 1.Department of Wind EnergySection of Composites and Materials Mechanics, Technical University of DenmarkRoskildeDenmark
  2. 2.Queen MaryUniversity of London, Centre of Materials Research, School of Engineering and Materials ScienceLondonUK

Personalised recommendations