Applied Composite Materials

, Volume 21, Issue 5, pp 707–724 | Cite as

Comparison between the Classic Sensor Embedding Method and the Monitoring Patch Embedding Method for Composites Instrumentation

  • M. Torres
  • F. Collombet
  • B. Douchin
  • L. Crouzeix
  • Y-H. Grunevald


In this paper, the classic embedding technique, with bared sensors, and a recent proposal, the monitoring patch, are compared with the aim to improve the composites in-core instrumentation. The monitoring patch emerges with the need to industrialize sensors integration inside composite structures; thus, a complete evaluation of its mechanical performance has to be done. Numerical and experimental campaigns are carried out on elementary carbon-epoxy coupons to evaluate the benefits and disadvantages of this procedure compared with the typical interlayer sensor embedding. The results show that the use of monitoring patch does not affect significantly the mechanical performance of instrumented coupons. An instrumentation transfer function (ITF) is proposed to link the information that electronic devices can detect, the mechanical phenomena around these electronic devices and the measurements data acquired by global or local techniques (DIC, FEM, gauges). A good correlation between the strain data acquired and the strain values calculated by FEM confirms the approach of the ITF to evaluate the influence of the monitoring patch on the measured signal.


Composite Embedding Bared sensor Monitoring patch In-core instrumentation 



The present work is part of the research project “Multi-sensor Instrumentation for Composite Materials and Structures (I2MC)” financially supported by the Thematic Advanced Research Network for Aeronautic and Space Sciences & Technologies of Toulouse (RTRA STAE). The first author conveys his special appreciation to the National Council of Science and Technology of Mexico (CONACYT) for the financial support.


  1. 1.
    Baker, W., McKenzie, I., Jones, R.: Development of life extension strategies for Australian military aircrafts using structural health monitoring of composite repair joints. Compos. Struct. 66, 133–143 (2004)CrossRefGoogle Scholar
  2. 2.
    Baker,: Structural health monitoring of a bonded composite patch repair on a ratigue-cracked F-111C wing. Air Vehicles Division, Defence Science and Technology Organisation, DSTO-RR-0335, Australian Government (2008)Google Scholar
  3. 3.
    Torres, M., Crouzeix, L., Collombet, F., Douchin, B., Grunevald, Y.-H.: Mechanical characterization of an alternative technique to embed sensors in composite structures: the monitoring patch. Appl. Compos. Mater. 19, 379–391 (2012)CrossRefGoogle Scholar
  4. 4.
    Luyckx, G., Voet, E., Geernaert, T., Chah, K., et al.: Response of FBGs in microstructured and bow tie fibers embedded in laminated composite. IEEE Photon. Technol. Lett. 21(18), 1290–1292 (2009)CrossRefGoogle Scholar
  5. 5.
    Collombet, F., Mulle, M., Grunevald, Y.H., Zitoune, R.: Contribution of the embedded optical fiber with Bragg grating in composite structures for tests-simulations dialogue. Mech. Adv. Mater. Struct. 13, 429–439 (2006)CrossRefGoogle Scholar
  6. 6.
    Hernández, H., Collombet, F., Douchin, B., Choqueuse, D., Davies, P., González, J.L.: Entire life time monitoring of filament wound composite cylinders using Bragg grating sensors: I. Adapted tooling and instrumented specimen. Appl. Compos. Mater. Struct. 16(3), 173–182 (2009)CrossRefGoogle Scholar
  7. 7.
    Su, Z., Wang, X., Chen, Z., Ye, L., Wang, D.: A built-in active sensor network for health monitoring of composite structures. Smart Mater. Struct. 15, 1939–1949 (2006)CrossRefGoogle Scholar
  8. 8.
    Yan, Y., Yam, L.H.: Online detection of crack damage in composite plates using embedded piezoelectric actuators/sensors and wavelet analysis. Compos. Struct. 58, 29–38 (2002)CrossRefGoogle Scholar
  9. 9.
    Mulle, M, Zitoune, R, Collombet, F.: Through-the-thickness material properties identification in a technological specimen using 3D-DIC and embedded FBG measurements. Exp. Mech. 1340–1343 (2008)Google Scholar
  10. 10.
    Grondel, S., Assaad, J., Delebarre, C., Moulin, E.: Health monitoring of a composite wingbox structure. Ultrason. 42, 819–824 (2004)CrossRefGoogle Scholar
  11. 11.
    Mueller, I., Chang, F.K., Roy, S., Mittal, M., Lonkar, K., Larrosa, C.: A robust structural health monitoring technique for airframe structures. Proceedings of the “7th International Workshop on Structural Health Monitoring” (2009)Google Scholar
  12. 12.
    Mulle, M., Zitoune, R., Collombet, F., Olivier, P., Grunevald, Y.H.: Thermal expansion of carbon–epoxy laminates measured with embedded FBGS—Comparison with other experimental techniques and numerical simulation. Compos. Part A 38, 1414–1424 (2007)CrossRefGoogle Scholar
  13. 13.
    Hernández, H., Collombet, F., Douchin, B., Choqueuse, D., Davies, P., González, J.L.: Entire life time monitoring of filament wound composite cylinders using Bragg grating sensors: III. In-service external pressure loading. Appl. Compos. Mater. Struct. 16(3), 135–147 (2009)CrossRefGoogle Scholar
  14. 14.
    Hernández, H., Collombet, F., Douchin, B., Choqueuse, D., Davies, P., González, J.L.: Entire life time monitoring of filament wound composite cylinders using Bragg grating sensors: II. Process Monitoring. Appl. Compos. Mater. Struct. 16(4), 197–209 (2009)CrossRefGoogle Scholar
  15. 15.
    Kobayashi, M., Jen, C.K., Bussiere, J.F., Wu, K.T.: High-temperature integrated and flexible ultrasonic transducers for non-destructive testing. NTD & E Int. 42, 157–161 (2009)Google Scholar
  16. 16.
    Zhou, G., Sim, L.M.: Evaluating damage in a smart composite laminates using embedded EFPI strain sensors. Opt. Lasers Eng. 47, 1063–1068 (2009)CrossRefGoogle Scholar
  17. 17.
    Tadigadapa, S., Mateti, K.: Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas. Sci. Technol. 20, 1–30 (2009)CrossRefGoogle Scholar
  18. 18.
    Tan, P., Tong, L.: A sensor charge output deviation method for delamination detection using isolated piezoelectric actuator and sensor patches. Compos. Part B 37, 583–592 (2006)CrossRefGoogle Scholar
  19. 19.
    Yocum, M., Abramovich, H., Grunwald, A.: Fully reversed electromechanical behavior of composite laminate with embedded piezoelectric actuator/sensor. Smart Mater. Struct. 12, 556–564 (2003)CrossRefGoogle Scholar
  20. 20.
    Cheng, J., Wu, X., Li, G., Taheri, F., Pang, S.S.: Development of a smart composite pipe joint integrated with piezoelectric layers under tensile loading. Int. J. Solids Struct. 43, 5370–5385 (2006)CrossRefGoogle Scholar
  21. 21.
    Yan, W., Wang, J., Chen, W.Q.: Delamination assessment of a laminated composite beam using distributed piezoelectric sensor/actuator. Smart Mater. Struct. 20, 12–26 (2011)CrossRefGoogle Scholar
  22. 22.
    Mall, S., Coleman, J.M.: Monotonic and fatigue loading behavior of a quasi-isotropic graphite/epoxy laminate embedded with piezoelectric sensors. Smart Mater. Struct. 7, 822–832 (1998)CrossRefGoogle Scholar
  23. 23.
    Mall, S.: Integrity of graphite/epoxy laminate embedded with piezoelectric sensor/actuator under monotonic and fatigue loads. Smart Mater. Struct. 11, 527–533 (2002)CrossRefGoogle Scholar
  24. 24.
    Mall, S., Hsu, T.L.: Electromechanical fatigue behavior of graphite/epoxy laminate embedded with piezoelectric actuator. Smart Mater. Struct. 9, 78–84 (2000)CrossRefGoogle Scholar
  25. 25.
    Hansen, J.P., Vizzini, A.J.: Fatigue response of a host structure with interlaced embedded devices. Intell. Mater. Syst. Struct. 11, 902–909 (2000)Google Scholar
  26. 26.
    Huang, Y., Nemat-Nasser, S.: Structural integrity of composite laminates with embedded micro-sensors. Sensors Syst. Netw. 65, 1–5 (2002)Google Scholar
  27. 27.
    Crouzeix, L., Périé, J.N., Collombet, F., Douchin, B.: An orthotropic variant of the equilibrium GAP method applied to the analysis of a biaxial test on a composite material. Compos Part A: Appl Sci Manuf. 40(11), 1732–1740 (2009)CrossRefGoogle Scholar
  28. 28.
    Périé, J.N., Calloch, S., Cluzel, C., Hild, F.: Analysis of a multiaxial test on a C/C composite by using digital image correlation and a damage model. Exp. Mech. 42, 318–328 (2002)CrossRefGoogle Scholar
  29. 29.
    Collombet, F., Grunevald, Y.H., Zitoune, R., Mulle, M.: Economical value added of multi instrumented technological evaluators for the development of composite civil aircraft. Proceedings of the “16th National Journeys on Composites (JNC16)” (2009)Google Scholar
  30. 30.
    Collombet, F., Luyckx, G., Sonnenfeld, C., Grunevald, Y.H., Davila, Y., Torres, M., Jacob, X., Wu, K.T., Rodriguez, S., Douchin, B., Crouzeix, L., Bazer-Bachi, R., Geernaert, T., Degrieck, J., Berghmans, F.: Cure monitoring of an autoclave manufactured industrial part: added value of complementary instrumentation. Proceedings of the “19th International Conference on Composite Materials”. 2013.Google Scholar
  31. 31.
    Sonnenfeld, C., Luyckx, G., Collombet, F., Grunevald, Y.H., Douchin, B., Crouzeix, L., Torres, M., Geernaert, T., Sulejmani, S., Chah, K., Mergo, P., Thienpont, H., Berghmans, F.: Cure cycle monitoring of laminated carbon fiber-reinforced plastic with fiber Bragg gratings in microstructured optical fiber. Proceedings of the “19th International Conference on Composite Materials” (2013)Google Scholar
  32. 32.
    Torres, M., Collombet, F., Douchin, B., Crouzeix, L., Bazer-Bachi, R., Grunevald, Y.-H., Lubin, J., Camps, T., Jacob, X., Rodriguez, S., Wu, K.-T.: Monitoring of the curing process of an industrial composite structure by TJS and FUT, Proceedings of the “35th International Conference on Metallurgy and Materials” (2013)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • M. Torres
    • 1
    • 2
  • F. Collombet
    • 1
  • B. Douchin
    • 1
  • L. Crouzeix
    • 1
  • Y-H. Grunevald
    • 3
  1. 1.INSA, UPS, ICA (Institut Clément Ader)Université de ToulouseToulouseFrance
  2. 2.ESIME TicománInstituto Politécnico NacionalMéxico D.FMéxico
  3. 3.Composites, Expertise & SolutionsCastanet TolosanFrance

Personalised recommendations