Applied Composite Materials

, Volume 19, Issue 5, pp 813–829 | Cite as

Enhanced Composites Integrity Through Structural Health Monitoring

Article

Abstract

This paper discusses the topic of how the integrity of safety-critical structural composites can be enhanced by the use of structural health monitoring (SHM) techniques. The paper starts with a presentation of how the certification of flight-critical composite structures can be achieved within the framework of civil aviation safety authority requirements. Typical composites damage mechanisms, which make this process substantially different from that for metallic materials are discussed. The opportunities presented by the use of SHM techniques in future civil aircraft developments are explained. The paper then focuses on active SHM with piezoelectric wafer active sensors (PWAS). After reviewing the PWAS-based SHM options, the paper follows with a discussion of the specifics of guided wave propagation in composites and PWAS-tuning effects. The paper presents a number of experimental results for damage detection in simple flat unidirectional and quasi-isotropic composite specimens. Calibrated through holes of increasing diameter and impact damage of various energies and velocities are considered. The paper ends with conclusions and suggestions for further work.

Keywords

Composites Composite structures Structural integrity Structural health monitoring Piezoelectric wafer active sensors SHM NDE PWAS 

References

  1. 1.
    Marshal, P., Rezai, A.: “Use of composites in aerostructures”, Newsletter of the European Society for Composite Materials (ESCM), issue 3, May (2000)Google Scholar
  2. 2.
    Bar-Cohen, Y.: Emerging NDT technologies and challenges at the beginning of the third millenium, part 1. Mater Eval 58(1), 17–26 (2000)Google Scholar
  3. 3.
    Bar-Cohen, Y.: Emerging NDT technologies and challenges at the beginning of the third millenium, part 2. Mater Eval 58(2), 141–150 (2000)Google Scholar
  4. 4.
    Soutis, C.: Fibre reinforced composites in aircraft construction. Prog Aerosp Sci 41(2), 143–151 (2005)CrossRefGoogle Scholar
  5. 5.
    Davies, G.A.O., Zhang, X.: Impact damage prediction in carbon composite structures. Int J Impact Eng 16(1), 149–170 (1995)CrossRefGoogle Scholar
  6. 6.
    Davies, G.A.O.: ‘Aerospace composite structures in the USA’. Report for the International Technology Service (Overseas Missions Unit) of the DTI, UK (1999)Google Scholar
  7. 7.
    Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, S.W., Nadler, B.R., Czarnecki, J.J.: “A review of structural health monitoring literature form 1996–2001,” Los Alamos National Laboratory report LA-13976-MS (2004)Google Scholar
  8. 8.
    Boller, C., Chang, F-K., Fujino, Y.: Encyclopedia of structural health monitoring, J. Wiley & Sons Ltd (2009)Google Scholar
  9. 9.
    Raghavan, A., Cesnik, C.E.S.: Review of guided-wave structural health monitoring. Shock Vib Digest 39(2), 91–114 (2007)CrossRefGoogle Scholar
  10. 10.
    Giurgiutiu, V.: Structural health monitoring with piezoelectric wafer active sensors, Elsevier Academic Press, 760 pages, ISBN 978-0120887606 (2008)Google Scholar
  11. 11.
    Kashtalyan, M., Soutis, C.: Stiffness degradation in cross-ply laminates damaged by transverse cracking and splitting. Composites Part A 31(4), 335–351 (2000)CrossRefGoogle Scholar
  12. 12.
    Kashtalyan, M., Soutis, C.: Analysis of local delaminations in composite laminates with angle ply matrix cracks. Int J Solid Struct 39(6), 1515–1537 (2002)CrossRefGoogle Scholar
  13. 13.
    Diamanti, K., Soutis, C.: Structural health monitoring techniques for aircraft composite structures. Prog Aerosp Sci 46(8), 343–352 (2010)CrossRefGoogle Scholar
  14. 14.
    Rogers, A.J., Handerek, V.A., Farhadiroushan, M., Feced, R., Parker, T.R., Parvaneh, F.: “Advances in distributed optical fiber sensing,” Proc. SPIE, 3483, 5–10 (1985)Google Scholar
  15. 15.
    Culshaw, B., Dakin, J.: Optical Fiber Sensors: system and applications, vol. II. Artech House, Norwood (1989)Google Scholar
  16. 16.
    Diaz Valdes, S.H., Soutis, C.: Health monitoring of composites using lamb waves generated by piezoelectric devices. Plast Rubber Compos 29(9), 475–481 (2000)Google Scholar
  17. 17.
    Giurgiutiu, V., Zagrai, A., Bao, J.: Damage identification in aging aircraft structures with piezoelectric wafer active sensors. J Intell Mater Syst Struct 15(9–10), 673–687 (2004)CrossRefGoogle Scholar
  18. 18.
    Hirsekorn, S.: Quality assessment of bonded interfaces by nonlinear ultrasonic techniques. Ultrasonics 39, 57–68 (2001)CrossRefGoogle Scholar
  19. 19.
    Van Den Abeele, K.E., Johnson, P.A., Sutin, A.: Nonlinear Elastic Wave Spectroscopy (NEWS) techniques to discern material damage, part I nonlinear wave modulation spectroscopy. Res Nondestr Eval 12(1), 17–30 (2000)CrossRefGoogle Scholar
  20. 20.
    Donskoy, D., Sutin, A., Ekimov, A.: Non linear acoustic interaction on contact Interfaces and its use for non destructive testing. NDT & E International 34(4), 231–238 (2001)CrossRefGoogle Scholar
  21. 21.
    Parsons, J., Staszewski, W.J.: Nonlinear acoustics with low-profile piezoceramic excitation for crack detection in metallic structures. Smart Mater Struct 15(4), 1110–1118 (2006)CrossRefGoogle Scholar
  22. 22.
    Keilers, C.H., Chang, F.-K.: Identifying delamination in composite beam using built-in piezoelectrics. J Intell Mater Syst Struct 6(5), 647–672 (1995)Google Scholar
  23. 23.
    Diaz Valdes, S.H., Soutis, C.: Real-time non-destructive evaluation of fiber composite laminates using low-frequency Lamb waves. J Acoust Soc Am 111(5), 2026–2033 (2002)CrossRefGoogle Scholar
  24. 24.
    Chrysochoidis, N.A., Barouni, A.K., Saravanos, D.A.: On the delamination detection in composite beams with active piezoelectric sensors using non-linear ultrasonics, Proceedings of SPIE - Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, art. no. 729552 (2009)Google Scholar
  25. 25.
    Chrysochoidis, N.A., Barouni, A.K., Saravanos, D.A.: Delamination detection in composites using wave modulation spectroscopy with a novel active nonlinear acousto-ultrasonic piezoelectric sensor. J Intel Mat Syst Str 22(18), 2193–2206 (2011)CrossRefGoogle Scholar
  26. 26.
    Sealea, M.D., Smith, B.T., Prosser, W.H.: Lamb wave assessment of fatigue and thermal damage in composites. J Acoust Soc Am 103(5), 2416–2424 (1998)CrossRefGoogle Scholar
  27. 27.
    Sealea, M.D., Madaras, E.I.: Lamb wave characterization of the effects of long-term thermal-mechanical aging on composite stiffness. J Acoust Soc Am 106(3), 1346–1352 (1999)CrossRefGoogle Scholar
  28. 28.
    Van Den Abeele, K., Le Bas, P.Y., Van Damme, B.: Quantification of material nonlinearity in relation to microdamage density using nonlinear reverberation spectroscopy: Experimental and theoretical study. J Acoust Soc Am 126(3), 963–972 (2009)CrossRefGoogle Scholar
  29. 29.
    ANSI/IEEE Std. 176: IEEE Standard on Piezoelectricity, the Institute of Electrical and Electronics Engineers, Inc., New York (1987)Google Scholar
  30. 30.
    Auld, B.A.: “Acoustic Fields and waves in solids”, Vol. 1 and 2, John Wiley & Son (1990)Google Scholar
  31. 31.
    Giurgiutiu, V.: In-situ structural health monitoring, diagnostics, and prognostics system utilizing thin piezoelectric sensors”. U.S. Patent Office #7,024,315 of April 8, (2006)Google Scholar
  32. 32.
    Giurgiutiu, V., Bao, J., Zagrai, A.N.: Structural health monitoring system utilizing guided Lamb waves embedded ultrasonic structural radar”, U.S. Patent Office #6,996,480 of February 7 (2006)Google Scholar
  33. 33.
    Giurgiutiu, V., Xu, B.: “Self-Processing Integrated Damage Assessment Sensor for Structural Health Monitoring (SPIDAS)”, U.S. Patent Office #7,174,255 of Feb. 6 (2007)Google Scholar
  34. 34.
    Nayfeh, A.H.: “Wave propagation in layered anisotropic media with application to composites.” Elsevier (1995)Google Scholar
  35. 35.
    Santoni-Bottai, G., Giurgiutiu, V.: “Exact shear-lag solution for guided waves tuning with piezoelectric wafer active sensors”, AIAA Journal, manuscript # 2010-05-J050667 (in press) (2010)Google Scholar
  36. 36.
    Giurgiutiu, V., Liu, W.: “ASCU-PWAS—Automatic Signal Collection Unit for PWAS-based Structural Health Monitoring” USC-IPMO, Disclosure ID No. 00433 of 4/23/2004 (2004)Google Scholar
  37. 37.
    Kashtalyan, M., Soutis, C.: Analysis of composite laminates with intra- and interlaminar damage. Prog Aerosp Sci 41(2), 152–173 (2005)CrossRefGoogle Scholar
  38. 38.
    Berbinau, P., Soutis, C., Guz, I.A.: Compressive failure of 0° unidirectional CFRP laminates by fibre microbuckling. Composites Sci Technol 59(9), 1451–1455 (1999)CrossRefGoogle Scholar
  39. 39.
    “Military Specification: Airplane Damage Tolerance Requirements”, Report No. MIL A 83444, Wright Patterson Air Force Base, United State Air Force Aeronautical Systems Division (1974)Google Scholar
  40. 40.
    “Standard Practice: Aircraft Structural Integrity Program (ASIP)”, Report No. MIL STD 1530B, Wright Patterson Air Force Base, United State Air Force Aeronautical Systems Division (2004)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.University of South CarolinaColumbiaUSA
  2. 2.University of SheffieldSheffieldUK

Personalised recommendations