Applied Composite Materials

, Volume 19, Issue 3–4, pp 459–473 | Cite as

Sea Water Ageing of Composites for Ocean Energy Conversion Systems: Influence of Glass Fibre Type on Static Behaviour

  • Amélie Boisseau
  • Peter Davies
  • Frédéric Thiebaud
Article

Abstract

Composite material components will be an essential part of ocean energy recovery devices, and their long term durability in sea water must be guaranteed. Despite extensive experience for boat structures and wind turbines few data exist to design structures subjected to a combination of mechanical loads and sea water immersion. This paper presents the first results from an experimental study, performed jointly with fibre manufacturers, and a resin supplier, to fill this gap. The experimental study is completed by numerical modelling to simulate the coupling between water absorption and mechanical behaviour. Sea water ageing is shown to result in a drop in quasi–static mechanical properties and a change in flexural mode from compression to tension at longer ageing times, which is consistent with results from the numerical simulations.

Keywords

Composite material Sea water ageing Failure mechanism Flexure Tidal turbine 

Notes

Acknowledgements

The authors are grateful to the members of this project for advice and support, in particular to Claude Renaud, Paul Lucas and Georg Adolphs (OCV), Luc Peters, Philippe Nellissen (3B), Rolf Nickel and Christoph Kensche (Momentive), Dominique Perreux (MaHyTec), and Dominique Choqueuse, Nicolas Lacotte, Bertrand Forest, Albert Deuff and Benoit Bigourdan (IFREMER Brest).

References

  1. 1.
    IFREMER. Synthèse de l’étude prospective sur les énergies renouvelables marines à l’horizon 2030, March 2008Google Scholar
  2. 2.
    IEA/ICOE annual report (2007)Google Scholar
  3. 3.
    European Commission, Ocean Energy Conversion in Europe (2006)Google Scholar
  4. 4.
    Frau, J.: Tidal energy: promising projects: La Rance, a successful industrial scale experiment. Energ. Convers. IEEE Trans. 8(3), 552–558 (1993)CrossRefGoogle Scholar
  5. 5.
    Mueller, M., Wallace, R.: Enabling science and technology for marine renewable energy. Energ. Pol. 36(12), 4376–4382 (2008)CrossRefGoogle Scholar
  6. 6.
    Davies, P., Lemoine, L. (eds.): Nautical applications of composite materials. Proc 3rd IFREMER Conference, 1992, Paris, FranceGoogle Scholar
  7. 7.
    Shenoi, R., Wellicome, J.: Composites in marine structures. Cambridge University Press (2008)Google Scholar
  8. 8.
    Davies, P., Choqueuse, D.: Ageing of composites in marine vessels. In: Martin, R. (ed.) Ageing of composites. Woodhead Publishers (2008)Google Scholar
  9. 9.
    Smith, C.S.: Design of marine structures in composite materials. Elsevier Science Publishers, London (1990)Google Scholar
  10. 10.
    Mouritz, A., Gellert, E., Burchill, P., Challis, K.: Review of advanced composite structures for naval ship and submarines. Compos. Struct. 53(1), 21–42 (2001)CrossRefGoogle Scholar
  11. 11.
    Lemière, Y.: The evolution of composite materials in submarine structures, in ref. [6]Google Scholar
  12. 12.
    Gibson, A.: The cost effective use of fibre reinforced composite offshore: HSE report 39 (2003)Google Scholar
  13. 13.
    Baldwin, D.D., Newhouse, N., Lo, K.: Composite production riser design. Proc. 29th annual Offshore Technology Conference, 1997, Houston, USAGoogle Scholar
  14. 14.
    Springer, G.S. (ed.): Environmental effects on composite materials, technomic (1981)Google Scholar
  15. 15.
    Davies, P., Baizeau, R., Choqueuse, D., Salmon, L., Nagot, F.: Aging and long term behavior of composite tubes. Recent developments in durability analysis of composite systems, DURACOSYS, 1999, Balkema PressGoogle Scholar
  16. 16.
    Richard, F., Perreux, D.: The safety-factor calibration of laminates for long-term applications: behavior model and reliability method. Comput. Sci. Tech. 61, 2087–2094 (2001)CrossRefGoogle Scholar
  17. 17.
    Gellert, E., Turkey, D.: Seawater immersion ageing of glass-fibre reinforced polymer laminates for marine applications. Compos. Part A 30(11), 1259–1265 (1999)CrossRefGoogle Scholar
  18. 18.
    Davies, P., Mazeas, F., Casari, P.: Sea water aging of glass reinforced composites: shear behaviour and damage modelling. J. Compos. Mater. 35(15), 1343–1372 (2001)Google Scholar
  19. 19.
    Maurin, R., Perrot, Y., Bourmaud, A., Davies, P., Baley, C.: Seawater ageing of low styrene emission resins for marine composite: mechanical behaviour and nano-indentation studies. Compos. Part A 40(8), 1024–1032 (2009)CrossRefGoogle Scholar
  20. 20.
    Weitsman, Y.: Moisture in composites: sorption and desorption. In: Reinfsnider, K.L. (ed.) Fatigue of composite materials, pp. 385–429. Elsevier, Amsterdam (1991)Google Scholar
  21. 21.
    Martin, R. (ed.): Ageing of composites. Woodhead Publishers (2008)Google Scholar
  22. 22.
    Marsh, G.: Tidal turbines harness the power of the sea. Reinforc. Plast 48, 44–47 (2004)CrossRefGoogle Scholar
  23. 23.
    Fraenkel, P.L.: Tidal current energy technologies, Ibis. 145–51 (2006)Google Scholar
  24. 24.
    Fraenkel, P.L.: Development and testing of Marine Current Turbine’s SeaGen 1.2 MW tidal stream turbine. 3rd International Conference on Ocean Energy; October 2010; BilbaoGoogle Scholar
  25. 25.
    OpenHydro press release. http://www.openhydro.com/news/171210.html Dec. 2010
  26. 26.
    Antheaume, S., Maître, T., Achard, J.: Hydraulic Darrieus turbines efficiency for free fluid flow conditions versus power farm conditions. Renew. Energ. 33, 2186–2198 (2008)CrossRefGoogle Scholar
  27. 27.
    Zanette, J., Imbault, D., Tourabi, A.: A design methodology for cross flow water turbines. Renew. Energ. 35(5), 997–1009 (2010)CrossRefGoogle Scholar
  28. 28.
    Marsh, G.: Wave and tidal power—an emerging new market for composites. Reinf. Plast. 53(5), 20–24 (2009)CrossRefGoogle Scholar
  29. 29.
    Jones, F.: Durability of reinforced plastics in liquid environments. In: Pritchard, G. (ed.) Reinforced plastics durability, Woodhead Publishing (1999)Google Scholar
  30. 30.
    Charles, R.: Static fatigue of glass I. J. Appl. Phys. 29(11), 1549–1560 (1958)CrossRefGoogle Scholar
  31. 31.
    Price, J., Hull, D.: Propagation of stress corrosion cracks in aligned glass fibre composite materials. J. Mater. Sci. 18, 2798–2810 (1983)CrossRefGoogle Scholar
  32. 32.
    Pauchard, V., Grosjean, F., Campion-Boulharts, H., Chateauminois, A.: Application of a stress-corrosion-cracking model to an analysis of the durability of glass/epoxy composites in wet environments. Comput. Sci. Tech. 62(4), 493–498 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Amélie Boisseau
    • 1
  • Peter Davies
    • 1
  • Frédéric Thiebaud
    • 2
    • 3
  1. 1.IFREMER Centre de Brest, Materials and Structures groupPlouzanéFrance
  2. 2.Université de Franche-Comté, DMA/FEMTO-STBesançonFrance
  3. 3.MAHYTECDoleFrance

Personalised recommendations