Applied Composite Materials

, Volume 19, Issue 3–4, pp 297–314 | Cite as

A Strategy to Support Design Processes for Fibre Reinforced Thermoset Composite Materials

  • Marc GasconsEmail author
  • Norbert Blanco
  • Joan Andreu Mayugo
  • Koen Matthys


The concept stage in the design for a new composite part is a time when several fundamental decisions must be taken and a considerable amount of the budget is spent. Specialized commercial software packages can be used to support the decision making process in particular aspects of the project (e.g. material selection, numerical analysis, cost prediction,...). However, a complete and integrated virtual environment that covers all the steps in the process is not yet available for the composite design and manufacturing industry. This paper does not target the creation of such an overarching virtual tool, but instead presents a strategy that handles the information generated in each step of the design process, independently of the commercial packages used. Having identified a suitable design parameter shared in common with all design steps, the proposed strategy is able to evaluate the effects of design variations throughout all the design steps in parallel. A case study illustrating the strategy on an industrial part is presented.


Functional composites (PMC) Finite element analysis (FEA) Production process Cost analysis 



The authors want to acknowledge the partial funding received from Poltank SAU and the Spanish government through the research project CICYT MAT2006-14159-C02-01. The authors also want to acknowledge the Center for Composite Materials of the University of Delaware for the support with the LIMS software.


  1. 1.
    Aplicator systems AB: (2010)
  2. 2.
    Ashby, M.F.: Multi-objective optimitzation in material design and selection. Acta Mater. 48(1), 349–369 (2000)CrossRefGoogle Scholar
  3. 3.
    ASME Boiler, Pressure Vessel Committee: Asme boiler and pressure vessel code, part 1. American Society of Mechanical Engineers (1971)Google Scholar
  4. 4.
    ASTM International: D3039-d3039m standard test method for tensile properties of polymer matrix composite materials (2007)Google Scholar
  5. 5.
    Bader, M.: Selection of composite materials and manufacturing routes for cost-effective performance. Compos., Part A Appl. Sci. Manuf. 33(7), 913–934 (2002)CrossRefGoogle Scholar
  6. 6.
    Barbero, E: Introduction to Composite Materials Design. Taylor and Francis, Philadelphia, PA, USA (1999)Google Scholar
  7. 7.
    Barbero, E: Computer aided design enviroment for composites (CADEC) (2008)Google Scholar
  8. 8.
    Correia, N.C., Robitaille, F., Long, A.C., Rudd, C.D., Simacek, P., Advani, S.G.: Use of resin transfer molding simulation to predict flow, saturation, and compaction in the vartm process. J. Fluid Eng-T ASME 126(2), 210–215 (2004)CrossRefGoogle Scholar
  9. 9.
    Correia, N.C., Robitaille, F., Long, A.C., Rudd, C.D., Simacek, P., Advani, S.G.: Analysis of the vacuum infusion moulding process: I. analytical formulation. Compos., Part A Appl. Sci. Manuf. 36(12), 1645–1656 (2005)CrossRefGoogle Scholar
  10. 10.
    Dassault Systemes: Abaqus 6.7 documentation (2007)Google Scholar
  11. 11.
    Davila, C., Camanho, P., Rose, C.: Failure criteria for frp laminates. J. Compos. Mater. 39(4), 323–345 (2005)CrossRefGoogle Scholar
  12. 12.
    Delaplace, A., Desmorat, R.: Discrete 3d model as complimentary numerical testing for anisotropic damage. Int. J. Fract. 2(148), 115–128 (2007)CrossRefGoogle Scholar
  13. 13.
    Farahmand, B., Nikbin, K.: Predicting fracture and fatigue crack growth properties using tensile properties. Eng. Fract. Mech. 75(8), 2144–2155 (2008)CrossRefGoogle Scholar
  14. 14.
    Garcia, J.A., Gascon, L., Chinesta, F.: A fixed mesh numerical method for modelling the flow in liquid composites moulding processes using a volume of fluid technique. Comput. Methods Appl. Mech. Engrg. 192(7–8), 877–893 (2003)CrossRefGoogle Scholar
  15. 15.
    Gonzalez, C., Llorca, J.: Virtual fracture testing of composites: a computational micromechanics approach. Eng. Fract. Mech. 74(7), 1126–1138 (2007)CrossRefGoogle Scholar
  16. 16.
    Gutowski, T.G., Dillon, G.: The elastic-deformation of lubricated carbon-fiber bundles—comparison of theory and experiments. J. Compos. Mater. 26(16), 2330–2347 (1992)CrossRefGoogle Scholar
  17. 17.
    Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47(2), 329–334 (1980)CrossRefGoogle Scholar
  18. 18.
    International Standard Organization: ISO 16528-1:2007 boilers and pressure vessels, part 1: performance requirements (2007)Google Scholar
  19. 19.
    Kessels, J.F.A., Jonker, A.S., Akkerman, R.: Fully 2,5 d flow modeling of resin infusion under flexible tooling using unstructured meshes and wet and dry compaction properties. Compos., Part A Appl. Sci. Manuf. 38(1), 51–60 (2007)CrossRefGoogle Scholar
  20. 20.
    Lee, Y.J., Wu, J.H., Hsu, Y., Chung, C.H.: A prediction method on in-plane permeability of mat/roving fibers laminates in vacuum assisted resin transfer molding. Polym. Compos. 27(6), 665–670 (2006)CrossRefGoogle Scholar
  21. 21.
    Lin, M., Hahn, H.T., Huh, H.: A finite element simulation of resin transfer molding based on partial nodal saturation and implicit time integration. Compos., Part A Appl. Sci. Manuf. 29(5–6), 541–550 (1998)CrossRefGoogle Scholar
  22. 22.
    Lloyd, G.: Regulations for the Certification of Wind Energy Conversion System. Lloyd Germanischer (1999)Google Scholar
  23. 23.
    Loh, T., Koh, S.C.L.: Critical elements for a successful erp implementation in smes. Int. J. Prod. Res. 17(42), 3433–3455 (2004)CrossRefGoogle Scholar
  24. 24.
    Luciano, R., Barbero, E.: Formulas for the stiffness of composites with periodic microstructure. Int. J. Solids Struct. 31(21), 2933–2944 (1994)CrossRefGoogle Scholar
  25. 25.
    McConnell, V.: Software delivers faster time-to-part and reduced testing. J. Reinf. Plast. Compos. 8(51), 24–28 (2007)Google Scholar
  26. 26.
    Miracle, D.B., Donaldson, S.L.: ASM Handbook. ASM International, Materials Park, OH, USA (2001)Google Scholar
  27. 27.
    Mishnaevsky, L., Lippmann, N., Schmauder, S.: Computational modeling of crack propagation in real microstructures of steels and virtual testing of artificially designed materials. Int. J. Fract. 120(4), 581–600 (2003)CrossRefGoogle Scholar
  28. 28.
    Monk, E., Wagner, B.: Concepts in Enterprise Resource Planning. Course Technology Cengage Learning, Boston, MA, USA (2008)Google Scholar
  29. 29.
    Monroy, C., Skordos, A., Sutcliffe, M.: Design selection methodology for composite structures. Mater. Des. 29(2), 418–426 (2008)CrossRefGoogle Scholar
  30. 30.
    MSC Software: Marc User’s Guide, vol. C Marc Manuals. Msc.Software, Santa Ana, CA, USA (2007)Google Scholar
  31. 31.
    MSCSoftware: Patran Manuals. Patran User’s Guide. Msc.Software, Santa Ana,CA, USA (2008)Google Scholar
  32. 32.
    Olivero, K.A., Hamidi, Y.K., Aktas, L., Altan, M.C.: Effect of preform thickness and volume fraction on injection pressure and mechanical properties of resin transfer molded composites. J. Compos. Mater. 38(11), 937–957 (2004)CrossRefGoogle Scholar
  33. 33.
    Pomeroy, R., Grove, S., Summerscales, J., Wang, Y., Harper, A.: Measurement of permeability of continuous filament mat glass-fibre reinforcements by saturated radial airflow. Compos., Part A Appl. Sci. Manuf. 38(5), 1439–1443 (2007)CrossRefGoogle Scholar
  34. 34.
    Puck, A., Schürmann, A.: Failure analysis of frp laminates by means of physically-based phenomenological models. Compos. Sci. Technol. 62(12–13), 1633–1662 (2002)CrossRefGoogle Scholar
  35. 35.
    Robitaille, F., Gauvin, R.: Compaction of textile reinforcements for composites manufacturing 2: compaction and relaxation of dry and h2o-saturated woven reinforcements. Polym. Compos. 19(5), 543–557 (1998)CrossRefGoogle Scholar
  36. 36.
    Rudd, C., Long, A., Kendall, K., Mangin, C.: Liquid Moulding Technologies. Woodhead Publishing and SAE International, Warrendale, PA, USA (1997)CrossRefGoogle Scholar
  37. 37.
    Seeton, C.J.: Viscosity temperature correlation for liquids. Tribol. Lett. 22(1), 67–78 (2006)CrossRefGoogle Scholar
  38. 38.
    Simacek, P., Advani, S.: Desirable features in mold filling simulations for liquid composite molding processes. Polym. Compos. 25(4), 355–367 (2004)CrossRefGoogle Scholar
  39. 39.
    Simacek, P., Advani, S.G.: A numerical model to predict fiber tow saturation during liquid composite molding. Compos. Sci. Technol. 63(12), 1725–1736 (2003)CrossRefGoogle Scholar
  40. 40.
    Simacek, P., Advani, S.G.: Modeling resin flow and fiber tow saturation induced by distribution media collapse in vartm. Compos. Sci. Technol. 67(13), 2757–2769 (2007)CrossRefGoogle Scholar
  41. 41.
    Skinner, M.L.: New applications and approaches expand market for composites software. J. Reinf. Plast. Compos. 50(6), 24–28 (2006)CrossRefGoogle Scholar
  42. 42.
    Srinivasan, R., Karandikar, H.M., Mistree, F.: Understanding design and manufacture interaction using compromise decision support problems. 1 a formulation for composite pressure vessels. Comput. Struct. 40(3), 679–692 (1991)CrossRefGoogle Scholar
  43. 43.
    Srinivasan, R., Karandikar, H.M., Mistree, F.: Understanding design and manufacture interaction using compromise decision support problems. 2 preliminary synthesis of composite pressure vessels. Comput. Struct. 40(3), 693–703 (1991)CrossRefGoogle Scholar
  44. 44.
    Srinivasan, R., Karandikar, H.M., Mistree, F.: Understanding design and manufacture interaction using compromise decision support problems. 3 design for manufacture of composite pressure vessels. Comput. Struct. 40(3), 705–717 (1991)CrossRefGoogle Scholar
  45. 45.
    Tsai, S., Wu, E.: A general theory of strength for anisotropic materials. J. Compos. Mater. 5(1), 58–80 (1971)CrossRefGoogle Scholar
  46. 46.
    Wang, K., Kely, D., Dutton, S.: Multi-objective optimisation of composite aerospace structrures. Compos. Struct. 57(1–4), 141–148 (2002)CrossRefGoogle Scholar
  47. 47.
    Williams, C., Summerscales, J., Grove, S.: Resin infusion under flexible tooling(rift). A review. Compos., Part A Appl. Sci. Manuf. 27(7), 517–524 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Marc Gascons
    • 1
    Email author
  • Norbert Blanco
    • 1
  • Joan Andreu Mayugo
    • 1
  • Koen Matthys
    • 2
  1. 1.AMADE, Department of Mechanical Engineering and Industrial ConstructionUniversity of GironaGironaSpain
  2. 2.School of Engineering and DesignBrunel UniversityUxbridgeUK

Personalised recommendations