Applied Composite Materials

, Volume 19, Issue 3–4, pp 363–378 | Cite as

PLLA/Flax Mat/Balsa Bio-Sandwich—Environmental Impact and Simplified Life Cycle Analysis

  • Antoine Le Duigou
  • Jean-Marc Deux
  • Peter Davies
  • Christophe Baley


In the present paper the environmental impact of biocomposites and bio-sandwich materials production are evaluated, using simplified Life Cycle Analysis (LCA) following the procedure recommended in the ISO 14044 standard. The materials are dimensioned and evaluated by comparing with reference materials, glass mat reinforced unsatured polyester and glass mat/unsatured polyester/balsa sandwich. The results indicate that bio-sandwich materials are very attractive in terms environmental impact. However further improvements in biocomposite and bio-sandwich mechanical strength are necessary if they are to be used in transport application compared to glass/polyester and glass/polyester/balsa sandwich.


Sandwich Natural fibre Biopolymer Balsa Simplified Life Cycle Analysis (SLCA) 


  1. 1.
    Bodros, E., Pillin, I., Montrelay, N., Baley, C.: Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos. Sci. Technol. 67(3–4), 462–470 (2007)CrossRefGoogle Scholar
  2. 2.
    Le Duigou, A., Pillin, I., Bourmaud, A., Davies, P., Baley, C.: Effect of recycling on mechanical behaviour of biocompostable flax/poly(l-lactide) composites. Compos. A 39(9), 1471–1478 (2008)CrossRefGoogle Scholar
  3. 3.
    Baley, C., Grohens, Y., Pillin, I.: Etat de l’art sur les matériaux composites biodégradables. Revue des composites et des matéraiux avancés 14, 135–166 (2004)CrossRefGoogle Scholar
  4. 4.
    ISO-14044: Environmental management. Life cycle assessment. Requirements and guidelines (2006)Google Scholar
  5. 5.
    Le Duigou, A., Davies, P., Baley, C.: Environmental impact analysis of the production of flax fibres to be used as composite material reinforcement. J. Biobased Mater. Bioenergy 5, 1–13 (2011)CrossRefGoogle Scholar
  6. 6.
    Diener, D., Siehler, U.: Ökologischer Vergleich von NMT- und GMT-Bauteilen. Angew. Makromol. Chem. 272(1), 1–4 (1999)CrossRefGoogle Scholar
  7. 7.
    Corbière-Nicollier, T., Gfeller Laban, B., Lundquist, L., Leterrier, Y., Månson, J.-A.E., Jolliet, O.: Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics. Resour. Conservative Recycling 33(4), 267–287 (2001)CrossRefGoogle Scholar
  8. 8.
    Pervaiz, M., Sain, M.M.: Carbon storage potential in natural fiber composites. Resour. Conserv. Recycl. 39(4), 325–340 (2003)CrossRefGoogle Scholar
  9. 9.
    Trouy-Triboulot, M., Triboulot, P.: Matériau bois- structure et caractéristiques. Techniques de l'ingénieur. C 925: 1-26Google Scholar
  10. 10.
    Vink, E.T.H., Rábago, K.R., Glassner, D.A., Gruber, P.R.: Applications of life cycle assessment to NatureWorks(TM) polylactide (PLA) production. Polym. Degrad. Stab. 80(3), 403–419 (2003)CrossRefGoogle Scholar
  11. 11.
    Vink, E., Glassner, D., Kolstad, J., Wooley, R., O’Connor, R.: The eco-profiles for current and near-future Naturworks polylactide (PLA) production. Ind. Biotechnol. 3(1), 58–81 (2007)CrossRefGoogle Scholar
  12. 12.
    Vink, E., Rábago, K., O’connor, R., Gruber, P.: The sustainability of Natureworks Polylactide Polymers and Ingeo Polylactide fibers: an update of the future. Macromol. Biosci. 4, 551–564 (2004)CrossRefGoogle Scholar
  13. 13.
    Vink, E., Davies, S., Kolstad, J.: The Eco-porfile for current Ingeo polylactide production. Ind. Biotechnol. 6(4), 212–224 (2010)CrossRefGoogle Scholar
  14. 14.
    Detzel, A., Krüger, M.: Life Cycle Assessment of Polylactide (PLA)—A comparison of food packaging made from NatureWorks® PLA and alternative materials. (2006)
  15. 15.
    Madival, S., Auras, R., Singh, S.P., Narayan, R.: Assessment of the environmental profile of PLA, PET and PS clamshell containers using LCA methodology. J. Cleaner Prod. 17(13), 1183–1194 (2009)CrossRefGoogle Scholar
  16. 16.
    Kim, S., Dale, B., Drzal, L., Misra, M.: Life cycle assessment of kenaf fiber reinforced biocomposite. J. Biobased Mater. Bioenergy 2, 85–93 (2008)CrossRefGoogle Scholar
  17. 17.
    Duflou, J.R., De Moor, J., Verpoest, I., Dewulf, W.: Environmental impact analysis of composite use in car manufacturing. CIRP Ann. Manuf. Technol. 58(1), 9–12 (2009)CrossRefGoogle Scholar
  18. 18.
    Ning, H., Janowski, G.M., Vaidya, U.K., Husman, G.: Thermoplastic sandwich structure design and manufacturing for the body panel of mass transit vehicle. Compos. Struct. 80(1), 82–91 (2007)CrossRefGoogle Scholar
  19. 19.
    Le Duigou, A., Deux, J-M., Davies, P., Baley, C.: PLLA/flax mat/balsa bio-sandwich manufacture and mechanical properties. 1–18 (2010)Google Scholar
  20. 20.
    Labouze, E., Le Guern, Y., Petiot, C.: Analyse de cycle de vie comparée d’une chemise en lin et d’une chemise en coton. Bio intelligence Service Report. (2007)Google Scholar
  21. 21.
    Le Duigou, A., Davies, P., Baley, C.: Seawater ageing of Flax/PLLA biocomposites. Polym. Degrad. Stab. 94, 1151–1162 (2009)CrossRefGoogle Scholar
  22. 22.
    Baley, C., Bodros, E.: Biocomposite à matrice PLLA renforcés par des mats de lin. Rev. Compos. Mater. Av. 16(1), 129–139 (2006)Google Scholar
  23. 23.
    Kellenberger, D., Althaus, H., Kunniger, T., Jungbluth, N.: Life cycle inventories of building products, Data V1.1. 7, 427–453 (2004)Google Scholar
  24. 24.
    Rennerwaal, H.: IdeMAT 2001. (2001)Google Scholar
  25. 25.
    Perrot, Y.: Influence des propriétés de la matrice sur le comportement mécanique de matériaux composites verre/polyester utilisés en construction navales de plaisance, Lorient. (2006)Google Scholar
  26. 26.
    Lundie, S., Ciroth, A., Huppes, G.: Inventory methods in LCA: Towards consistency and improvement.Final report. UNEP-SETAC Life Cycle Initiative. (2007)Google Scholar
  27. 27.
    Boutin, M., Flamin, C., Quinton, S., Gosse, G.: Etude des caractéristiques envionnementales du chanvre par l’analyse de son cycle de vie available at (2005)
  28. 28.
    Sharma, H.S.S., Van Sumere: The biology and processing of flax. In: C.F. (eds.). M Publications, Northern Ireland (1992), 576Google Scholar
  29. 29.
    Frischknecht, R., Jungbluth, N., Althaus, H., Doka, G., Dones, R., Heck, T., Hellweg, S., Hichier, R., Nemecek, T., Rebitzer, G., Spielman, M., Wernet, G.: Overview and report EcoInvent Data V2.0 N°1, Dubendorf (2007)Google Scholar
  30. 30.
    Vidal, R., Martínez, P., Mulet, E., González, R., López-Mesa, B., Fowler, P., Fang, J.: Environmental assessment of biodegradable multilayer film derived from carbohydrate polymers. J. Polym. Environ. 15(3), 159–168 (2007)CrossRefGoogle Scholar
  31. 31.
    Guinée, J., Gorée, M., Heijungs, R., Huppes, G., Kleijn, R., de Koenig, A.: Life cycle assessment: An operational guide to the ISO standards. Final report; Centre of environmental Science. Leiden University. (2001)Google Scholar
  32. 32.
    Vidal, R., Martínez, P., Garraín, D.: Life cycle assessment of composite materials made of recycled thermoplastics combined with rice husks and cotton linters. Int. J. Life Cycle Assess. 14(1), 73–82 (2009)CrossRefGoogle Scholar
  33. 33.
    González-García, S., Hospido, A., Feijoo, G., Moreira, M.T.: Life cycle assessment of raw materials for non-wood pulp mills: Hemp and flax. Resour. Conserv. Recycl. 54(11), 923–930 (2010)CrossRefGoogle Scholar
  34. 34.
    Frischknecht, R., Jungbluth, N., Althaus, H., Bauer, C., Doka, G., Dones, R., Hischier, R., Hellweg, S., Humbert, S., Köllner, T., Loerincik, Y., Margni, M., Nemecek, T.: Implementation of life cycle impact assessment methods-ecoinvent report v2.0 No. 3, Dübendorf, Switzerland (2007)Google Scholar
  35. 35.
    Pre: SIMAPRO 7.18 Pre consultants B.V. Printerweg 18, 3821. AD Amersfoort, The netherland (2008)Google Scholar
  36. 36.
    ASTM-C393: Standard test method for Flexural properties of sandwich constructions. ASTM (2000)Google Scholar
  37. 37.
    Takahashi, J.: In JEC show Asia-automotive & mass transportation. Singapore (2009)Google Scholar
  38. 38.
    Dissanakaye, N., Summerscales, J., Grove, S., Singh, M.: Life cycle assessment of flax fibre for the reinforcement of composites. J. Biobased Mater. Bioenergy 3, 1–4 (2009)CrossRefGoogle Scholar
  39. 39.
    Dissanayake, N., Summerscales, J., Grove, S., Singh, S.: Energy use in the production of flax fiber for the reinforcement of composites. J. Nat. Fibers 6(4), 331–346 (2009)CrossRefGoogle Scholar
  40. 40.
    Zah, R., Hischier, R., Leão, A.L., Braun, I.: Curauá fibers in the automobile industry—a sustainability assessment. J. Cleaner Prod. 15(11–12), 1032–1040 (2007)CrossRefGoogle Scholar
  41. 41.
    Recycled Organics Unit TUoNSW, Life cycle inventory and life cycle assessment for windrow composting systems, ed. 9 I.: Department of Environment and Conservation NSW. (2006)Google Scholar
  42. 42.
    ISO-178: Matières plastiques-Détermination des caractéristiques de flexion des matières plastiques rigides; Norme internationale ISO (1975)Google Scholar
  43. 43.
    LTD AcP: Technical datasheet Baltek SB100;

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Antoine Le Duigou
    • 1
  • Jean-Marc Deux
    • 1
  • Peter Davies
    • 2
  • Christophe Baley
    • 1
  1. 1.LIMATB (Laboratoire d’Ingénierie des Matériaux de Bretagne), Université de Bretagne SudLorient CEDEXFrance
  2. 2.IFREMER Materials and Structures groupPlouzané CEDEXFrance

Personalised recommendations