Advertisement

Applied Composite Materials

, Volume 18, Issue 5, pp 421–438 | Cite as

PLLA/Flax Mat/Balsa Bio-Sandwich Manufacture and Mechanical Properties

  • Antoine Le Duigou
  • Jean-Marc Deux
  • Peter Davies
  • Christophe Baley
Article

Abstract

This paper describes the manufacture and mechanical characterization of a sandwich material which is 100% bio-sourced. The flax mat/PLLA facings and balsa core can also be composted at end of service life. Manufacture is by vacuum bag moulding. The optimum moulding time and temperature are a compromise between ensuring good impregnation and avoiding degradation, and holding for 60 min at 180°C was found to be satisfactory. The mechanical properties of the bio-sandwich obtained are compared to those of a traditional glass reinforced polyester balsa sandwich. The flexural strength is 30% lower, as predicted based on the facing properties. Skin/core adhesion is also measured using debonding tests. Crack propagation occurs at the skin/core interface in the traditional sandwich but within the facing in the bio-sandwich. The impregnation of the core in the two materials is examined using X-ray micro-tomography.

Keywords

Sandwich Biofibre Biopolymer Vacuum forming 

References

  1. 1.
    Mohanty, A. K., Misra, M., & Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: an overview. Macromol. Mater. Eng., 276–277(1), 1–24.CrossRefGoogle Scholar
  2. 2.
    John, M. J., & Thomas, S. (2008). Biofibres and biocomposites. Carbohydr. Polym., 71(3), 343–364.CrossRefGoogle Scholar
  3. 3.
    Satyanarayana, K. G., Arizaga, G. G. C., & Wypych, F. (2009). Biodegradable composites based on lignocellulosic fibers–An overview. Prog. Polym. Sci., 34(9), 982–1021.CrossRefGoogle Scholar
  4. 4.
    Bogoeva-Gaceva, G., Avella, M., Malinconico, M., Buzarovska, A., Grozdanov, A., Gentile, G., et al. (2007). Natural fiber eco-composites. Polym. Compos., 28(1), 98–107.CrossRefGoogle Scholar
  5. 5.
    Bodros, E., Pillin, I., Montrelay, N., & Baley, C. (2007). Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos. Sci. Technol., 67(3–4), 462–470.CrossRefGoogle Scholar
  6. 6.
    Plackett, D., Andersen, T. L., Pedersen, W. B., & Nielsen, L. (2003). Biodegradable composites based on -polylactide and jute fibres. Compos. Sci. Technol., 63(9), 1287–1296.CrossRefGoogle Scholar
  7. 7.
    Le Duigou, A., Pillin, I., Bourmaud, A., Davies, P., & Baley, C. (2008). Effect of recycling on mechanical behaviour of biocompostable flax/poly(l-lactide) composites. Compos. A, 39(9), 1471–1478.CrossRefGoogle Scholar
  8. 8.
    Ochi, S. (2008). Mechanical properties of kenaf fibers and kenaf/PLA composites. Mech. Mater., 40(4–5), 446–452.CrossRefGoogle Scholar
  9. 9.
    Le Duigou, A., Davies, P., & Baley, C. (2009). Seawater ageing of Flax/PLLA biocomposites. Polym. Degrad. Stab., 94, 1151–1162.CrossRefGoogle Scholar
  10. 10.
    Islam, M. S., Pickering, K. L., & Foreman, N. J. (2010). Influence of accelerated ageing on the physico-mechanical properties of alkali-treated industrial hemp fibre reinforced poly(lactic acid) (PLA) composites. Polym. Degrad. Stab., 95(1), 59–65.CrossRefGoogle Scholar
  11. 11.
    Hu, R., Sun, M., and Lim, J.: Moisture absorption, tensile strength and microstructure evolution of short jute fiber/polylactide composite in hygrothermal environment. Mater. Design, (2010).Google Scholar
  12. 12.
    Lystrup, A. (2006). Vacuum consolidation of thermoplastic composites for wind turbine rotor blades. in 27th Riso International Symposium on material science: Polymer composites materials for wind power turbines. Roskilde: Riso National Laboratory.Google Scholar
  13. 13.
    Ijaz, M., Robinson, M., & Gibson, A. G. (2007). Cooling and crystallisation behaviour during vacuum-consolidation of commingled thermoplastic composites. Compos. A, 38(3), 828–842.CrossRefGoogle Scholar
  14. 14.
    Bronsted, P., Liholt, H., & Lystrup, A. (2005). Composite material for wind power turbine blades. Annu. Rev. Mater. Sci., 35, 505–538.CrossRefGoogle Scholar
  15. 15.
    Twintex, http://twintex.com, 2006.
  16. 16.
    Karlsson, K. F., & Åström. (1997). Manufacturing and applications of structural sandwich components. Compos. A, 28(2), 97–111.CrossRefGoogle Scholar
  17. 17.
    Ning, H., Janowski, G. M., Vaidya, U. K., & Husman, G. (2007). Thermoplastic sandwich structure design and manufacturing for the body panel of mass transit vehicle. Compos. Struct., 80(1), 82–91.CrossRefGoogle Scholar
  18. 18.
    Scudamore, R., & Cantwell, W. J. (2002). The effect of moisture and loading rate on the interfacial fracture properties of sandwich structures. Polym Compos, 23(3), 406–407.CrossRefGoogle Scholar
  19. 19.
    Cantwell, W. J., Scudamore, R., Ratcliffe, J., & Davies, P. (1999). Interfacial fracture in sandwich laminates. Compos. Sci. Technol., 59(14), 2079–2085.CrossRefGoogle Scholar
  20. 20.
    Dweib, M. A., Hu, B., O’Donnell, A., Shenton, H. W., & Wool, R. P. (2004). All natural composite sandwich beams for structural applications. Compos. Struct., 63(2), 147–157.CrossRefGoogle Scholar
  21. 21.
    Baley, C., Perrot, Y., Busnel, F., Guezenoc, H., & Davies, P. (2006). Transverse tensile behaviour of unidirectional plies reinforced with flax fibres. Mater. Lett., 60(24), 2984–2987.CrossRefGoogle Scholar
  22. 22.
    Baley, C., & Bodros, E. (2006). Biocomposite à matrice PLLA renforcés par des mats de lin. Rev. Compos. Mater. Av., 16(1), 129–139.Google Scholar
  23. 23.
    Le Duigou, A., Davies, P., & Baley, C. (2009). Interfacial bonding of flax/Poly(L-Lactide) biocomposites. Compos. Sci. Technol., 70(2), 231–239.CrossRefGoogle Scholar
  24. 24.
    Charlet, K., Baley, C., Morvan, C., Jernot, J. P., Gomina, M., & Bréard, J. (2007). Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites. Compos. A, 38(8), 1912–1921.CrossRefGoogle Scholar
  25. 25.
    Baley, C. (2002). Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos. A, 33(7), 939–948.CrossRefGoogle Scholar
  26. 26.
    Kelly, A., & Tyson, W. (1965). Tensile properties of fibre reinforced metals: copper/tungsten and copper/molybdenum. J. Mech. Phys. Solids, 13, 329–350.CrossRefGoogle Scholar
  27. 27.
    Le Duigou, A., Davies, P., & Baley, C. (2010). Interfacial bonding of flax/Poly(L-Lactide) biocomposites. Compos. Sci. Technol., 70(2), 231–239.CrossRefGoogle Scholar
  28. 28.
    Perrot, Y.: Influence des propriétés de la matrice sur le comportement mécanique de matériaux composites verre/polyester utilisés en construction navales de plaisance, in PhD Thesis (In french), Université de bretagne sud (2006), Lorient.Google Scholar
  29. 29.
    ASTM-C393: Standard test method for Flexural properties of sandwich constructions. ASTM, (2000).Google Scholar
  30. 30.
    Prasad, S., & Carlsson, L. (1994). Debonding and crack kinking in foam core sandwich beams- I. Analysis of fracture specimens. Eng. Fract. Mech., 47(6), 813–824.CrossRefGoogle Scholar
  31. 31.
    Prasad, S., & Carlsson, L. (1994). Debonding and crack kinking in foam core sandwich beams-II. Experimental investigation. Eng. Fract. Mech., 47(6), 825–841.CrossRefGoogle Scholar
  32. 32.
    Ratcliffe, J.: Sizing single cantilever beam specimens for characterizing facesheet/core peel debonding in sandwich structure. NASA/TP-2010-216169, (2010)Google Scholar
  33. 33.
    Berry, J.: Determination of fracture surface energies by the cleavage technique. J. Appl. Physi. 34, (1963)Google Scholar
  34. 34.
    Hounsfield, G. (1973). Computerized transverse axial scanning tomography: Part I, description of system. Br. J. Radiol., 46, 1016–1022.CrossRefGoogle Scholar
  35. 35.
    Bossi, R., Friddell, K., and Lowrey, A.: Computed Tomography. In: Summersccales J.(ed.) Non-destructive testing of fibre reinforced composites, Elsevier, (1990)Google Scholar
  36. 36.
    Bayraktar, E., Antolovich, S., & Bathias, C. (2008). New developments in non-destructive controls of the composite materials and applications in manufacturing engineering. J. Mater. Process. Technol., 206(1–3), 30–44.CrossRefGoogle Scholar
  37. 37.
    Davies, P., Choqueuse, D., and Bourbouze, G.: Micro-tomography to study high performance sandwich structures. J. Sandw. Struct. Mater., (2009, In press)Google Scholar
  38. 38.
    Van de Velde, K., & Baetens, E. (2001). Thermal and mechanical properties of flax fibres as potential composite reinforcement. Macromol. Mater. Eng., 286(6), 342–349.CrossRefGoogle Scholar
  39. 39.
    Kopinke, F., Remmler, M., Mackenzie, K., Möder, M., & Wachsen, O. (1996). Thermal decomposition of biodegradable polyesters-II. Poly(lactic acid). Polym. Degrad. Stab., 53, 329–342.CrossRefGoogle Scholar
  40. 40.
    Baley, C., Morvan, C., & Grohens, Y. (2004). Influence of the absorbed water on the tensile strength of flax fibers. In V. Y. Grohens (Ed.), Polymer-Solvent complexes and intercalates. Lorient: Wiley-VCH.Google Scholar
  41. 41.
    Placet, V. (2009). Characterization of the thermo-mechanical behaviour of Hemp fibres intended for the manufacturing of high performance composites. Compos. A, 40(8), 1111–1118.CrossRefGoogle Scholar
  42. 42.
    Van de velde, K., & Kiekens, P. (2002). Thermal degradation of flax: determination of kinetic parameter with thermogravimetric analysis. J. Appl. Polym. Sci., 83(12), 2343–2464.CrossRefGoogle Scholar
  43. 43.
    Liu, X., Zou, Y., Li, W., Cao, G., & Chen, W. (2006). Kinetics of thermo-oxidative and thermal degradation of poly(d, l-lactide) (PDLLA) at processing temperature. Polym. Degrad. Stab., 91(12), 3259–3265.CrossRefGoogle Scholar
  44. 44.
    Baley, C., Busnel, F., Grohens, Y., & Sire, O. (2006). Influence of chemical treatments on surface properties and adhesion of flax fibre-polyester resin. Compos. A, 37(10), 1626–1637.CrossRefGoogle Scholar
  45. 45.
    Guillon, D.: Fibre de verre de renforcement. Technique ed l’ingénieur, 1995. A2 110.Google Scholar
  46. 46.
    Hermann, A. S., Nickel, J., & Riedel, U. (1998). Construction materials based upon biologically renewable resources—from components to finished parts. Polym. Degrad. Stab., 59, 251–261.CrossRefGoogle Scholar
  47. 47.
    Ouagne, P., Bizet, L., Baley, C., and Bréard, J.: Analysis of the film stacking processing parameters for PLLA/flax fibre fiber biocomposites. J. Compos. Mater. 0, 1–13 (2009)Google Scholar
  48. 48.
    LTD, A.c.P., Technical datasheet Baltek SB100-. www.atlcomposites.com.
  49. 49.
    Cantwell, W. J., & Davies, P. (1996). A study of skin-Core adhesion in glass fibre reinforced sandwich materials. Appl. Compos. Mater., 3, 407–420.CrossRefGoogle Scholar
  50. 50.
    Gibson, L. and Asby, M.: Cellular solids-structure & properties, ed. Press, P. 1988.Google Scholar
  51. 51.
    Quéré, D.: Loi du mouillage et de l’imprégnation. Technique de l’ingénieur. J2 140.Google Scholar
  52. 52.
    Baley, C., Grohens, Y., Busnel, F., & Davies, P. (2004). Application of interlaminar test to marine composites. Relation between glass fibre/polymer interfaces and interlaminar properties of marine composites. Appl. Compos. Mater., 11, 77–98.CrossRefGoogle Scholar
  53. 53.
    Auras, R., Harte, B., & Selke, S. (2004). An overview of polylactides as packaging materials. Macromol. Biosci., 4(9), 835–864.CrossRefGoogle Scholar
  54. 54.
    Ferreira, B. M. P., Zavaglia, C. A. C., & Duek, E. A. R. (2002). Films of PLLA/PHBV: thermal, morphological, and mechanical characterization. J. Appl. Polym. Sci., 86(11), 2898–2906.CrossRefGoogle Scholar
  55. 55.
    Nardin, M.: Interface fibre-matrice dans les matériaux composites- Application aux fibres végétales. Renforcement des polymères par des fibres végétales- Journée Scientifique et Technique- AMAC, ed. avancés, R.d.c.e.d.m. Vol. 16, Hermes-Lavoisier, (2006)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Antoine Le Duigou
    • 1
  • Jean-Marc Deux
    • 1
  • Peter Davies
    • 2
  • Christophe Baley
    • 1
  1. 1.LIMATB (Laboratoire d’Ingénierie des Matériaux de Bretagne)Université de Bretagne SudLorient CedexFrance
  2. 2.IFREMER, Centre de Brest, Materials and Structures GroupPlouzané CedexFrance

Personalised recommendations