Advertisement

Applied Composite Materials

, Volume 16, Issue 3, pp 173–182 | Cite as

Entire Life Time Monitoring of Filament Wound Composite Cylinders Using Bragg Grating Sensors: I. Adapted Tooling and Instrumented Specimen

  • H. Hernández-Moreno
  • F. Collombet
  • B. Douchin
  • D. Choqueuse
  • P. Davies
  • J. L. González Velázquez
Article

Abstract

This paper is the first of three describing the monitoring of filament wound cylinders using Bragg grating sensors. Part I describes the technological issues and the development of specimens instrumented with embedded gratings and thermocouples. The aim is to monitor the temperature and strain changes during cylinder manufacture (see Part II) and in-service behaviour (see Part III). Specimens are filament wound glass reinforced epoxy composites, so two technological problems have to be solved: one is to collect data during fabrication and the second is to remove the specimen from the mandrel without damaging the sensors. These were accomplished by design of a specially adapted split mandrel and a rotating interface between the filament winding machine and the composite cylinder in fabrication. Immediately after sensor insertion it was possible to monitor the fabrication process, by collecting Bragg grating wavelength and temperature response, using this specially adapted tooling.

Keywords

Polymer-matrix composites (PMCs) Residual/internal stress Non-destructive testing Filament winding 

Notes

Acknowledgments

H. Hernández-Moreno wishes to thank the National Council of Science and Technology of Mexico (CONACYT) and the National Polytechnic Institute of Mexico (IPN) for their scholarship sponsorship. The authors thank Messrs. I. Fernandez Hernandez, J. Bauw, F. Afonso, and E. Vargas Rojas for their collaboration during their internship at ICA.

References

  1. 1.
    Collombet, F., Mulle, M., Hernandez Moreno, H., Zitoune, R., Douchin, B., Grunevald, Y.-H.: Benefit from embedded sensors to study polymeric composite structures. To be published in Damage and Fracture Mechanics (1st African InterQuadrennial ICF conference AIQ-ICF2008 Algier, Algeria), Boukharouba et al editor, Springer 2008.Google Scholar
  2. 2.
    Sorensen, L., Botsis, J., Gmür, T., Cugnoni, J.: Delamination detection and characterisation of bridging tractions using long FBG optical sensors. Composites Part A: Applied Science and Manufacturing 38(10), 2087–2096 (2007)CrossRefGoogle Scholar
  3. 3.
    Sorensen, L., Botsis, J., Gmür, T., Humbert, L.: Bridging tractions in mode I delamination: Measurements and simulations Composites Science and Technology, 2008/12 Vol. 68, Issue 12, p. 2350-2358.Google Scholar
  4. 4.
    Messager, T., Pyrz, M., Gineste, B., Chauchot, P.: Optimal laminations of thin underwater composite cylindrical vessels. Compos. Struct. 58(4), 529–537 (2002). 12CrossRefGoogle Scholar
  5. 5.
    Stringer, L.G., Hayman, R.J., Hinton, M.J., Badcock, R.A., Wisnom, M.R.: Curing stresses in thick polymer composite components. Part II: Management of residual stresses. Proceedings of ICCM-12 Conference. Paris (France), July, 1999. Ref. CD-ROM paper 861, p. 1-10.Google Scholar
  6. 6.
    Collombet, F., Mulle, M., Grunevald, Y.-H., Zitoune, R.: Contribution of embedded optical fiber with bragg grating in composite structures for tests-simulations dialogue. Mechanics of Advanced Materials and Structures 13(5), 429–439 (2006)CrossRefGoogle Scholar
  7. 7.
    Mulle, M., Zitoune, R., Collombet, F., Olivier, P., Grunevald, Y.-H.: Thermal expansion of carbon–epoxy laminates measured with embedded FBGS – Comparison with other experimental techniques and numerical simulation. Composites Part A: Applied Science and Manufacturing 38(5), 1414–1424 (2007)CrossRefGoogle Scholar
  8. 8.
    Ramos, C.A., de Oliveira, R., Marques, A.T.: Design of an optical fibre sensor patch for longitudinal strain measurement in structures. Mater. Des. (2008). doi: 10.1016/j.matdes.2008.11.008
  9. 9.
    Herzberg, I., Li, H.C.H., Dharmawan, F., Mouritz, A.P., Nguyen, M., Bayandor, J.: Damage assessment and monitoring of composite ship joins. Compos. Struct. 67(2), 205–216 (2005)CrossRefGoogle Scholar
  10. 10.
    Lee, D.H., Kim, S.K., Lee, W.I., Ha, S.K., Tsai, S.W.: Smart cure of thick composite filament wound structures to minimize the development of residual stresses. Comp. Part A 37(4), 530–537 (2006)CrossRefGoogle Scholar
  11. 11.
    Degrieck, J., De Waele, W., Verleysen, P.: Monitoring of fibre reinforced composites with embedded optical fibre Bragg sensors, with application to filament wound pressure vessels. NDTE Int. 34(4), 289–296 (2001)CrossRefGoogle Scholar
  12. 12.
    Brower, D.V.: Structural properties measurements in deepwater oil and gas fields using an advanced fiber optic sensor monitoring system. SAMPE Journal 41(5), 6–9 (2005)Google Scholar
  13. 13.
    Hernández-Moreno, H., Douchin, B., Collombet, F., Choqueuse, D., Davies, P.: Influence of winding pattern on the mechanical behavior of filament wound composite cylinders under external pressure. Compos. Sci. Technol. 68(3-4), 1015–1024 (2008)CrossRefGoogle Scholar
  14. 14.
    Hahn, H.T., Jensen, D.W., Claus, S.J., Pai, S.P., Hipp, P.A.: Structural design criteria for filament-wound composite shells. NASA CR 195125, 1–167 (1994)Google Scholar
  15. 15.
    Rousseau, J., Perreux, D., Verdie, N.: The influence of winding patterns on the damage behaviour of filament-wound pipes. Comp Sci. Tech 59(9), 1439–1449 (1999)CrossRefGoogle Scholar
  16. 16.
    Hernandez-Moreno, H., Douchin, B., Collombet, F., Davies, P.: Precise positioning of unit cells and embedded instrumentation for fabrication and pressure testing of filament wound tubes. Proceedings of ECCM-11, Rhodes (Greece), May 2004. Ref. CD-ROM 321, p.1-10.Google Scholar
  17. 17.
    Zhoul, G., Sim, L.M.: Damage detection and assessment in fibre-reinforced composite structures with embedded fibre optic sensors-review. Smart Mater. Struct. 11(6), 925–939 (2002)CrossRefADSGoogle Scholar
  18. 18.
    Ferraroa, P., De Natale, G.: On the possible use of optical fiber Bragg gratings as strain sensors for geodynamical monitoring. Opt. Laser Eng 37(2-3), 115–130 (2002)CrossRefGoogle Scholar
  19. 19.
    Kang, H.K., Park, J.S., Kang, D.H., Kim, C.U., Hong, C.S., Kim, C.-G.: Strain monitoring of a filament wound composite tank using fiber Bragg grating sensors. Smart Mater Struct. 11(6), 848–853 (2002)CrossRefADSGoogle Scholar
  20. 20.
    Kuang, K.S.C., Zhang, L., Cantwell, W.J., Bennion, I.: Process monitoring of aluminum-foam sandwich structures based on thermoplastic fibre–metal laminates using fibre Bragg gratings. Comp Sci. Tech 65(3-4), 669–676 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • H. Hernández-Moreno
    • 1
    • 2
  • F. Collombet
    • 1
  • B. Douchin
    • 1
  • D. Choqueuse
    • 3
  • P. Davies
    • 3
  • J. L. González Velázquez
    • 4
  1. 1.Université de Toulouse; INSA, UPS; Mines Albi, ISAE; ICA (Institut Clément Ader)ToulouseFrance
  2. 2.Instituto Politécnico NacionalESIME Unidad TicománMéxico D. F.México
  3. 3.IFREMER Materials & Structures groupBrest Centre, BP70PlouzanéFrance
  4. 4.Instituto Politécnico NacionalESIQIEMéxico D. F.México

Personalised recommendations