Applied Composite Materials

, Volume 16, Issue 3, pp 135–147 | Cite as

Entire Life Time Monitoring of Filament Wound Composite Cylinders Using Bragg Grating Sensors: III. In-Service External Pressure Loading

  • H. Hernández-Moreno
  • F. Collombet
  • B. Douchin
  • D. Choqueuse
  • P. Davies


This article is the third of three papers describing a study of the monitoring of filament wound composite cylinders for underwater applications. Part I described the technological issues and the development of specimens instrumented with embedded gratings and thermocouples, with the aim of monitoring the temperature and strain changes during the cylinder manufacturing presented in Part II. Residual strains are not negligible, over 1,000 axial micro-strain at the end of the curing cycle. Part III describes the response of these cylinders to hydrostatic pressure loading. The same embedded fiber optical Bragg gratings (FBGs) used for parts I and II of the study are here used as strain gauges. Their response is compared to that of classical resistive strain gages bonded to the inner surface of the tube. Results from these initial tests demonstrate the embedded FBG sensor’s capability to monitor structural health of an underwater structure from fabrication throughout its service life. Embedded instrumentation records strains during pressure cycles up to final failure, without affecting the cylinder response.


Polymer-matrix composites (PMCs) Smart materials Residual stress Filament winding Underwater application 



H. Hernández Moreno wishes to thank the National Council of Science and Technology of Mexico (CONACYT) and the National Polytechnic Institute of Mexico (IPN) for their scholarship sponsoring. The authors thank I. Fernandez Hernandez, J. Bauw, F. Afonso, and E. Vargas Rojas for their collaboration during their internship at LGMT. Also thanks to M. Mulle at LGMT, for his collaboration during the instrumented implosion test, and to IFREMER for financial and technical support, with special thanks to P. Warnier and A. Duff.


  1. 1.
    Stachiw, J.D., Frame, B.: Graphite fiber reinforced plastic pressure hull mod 2 for the advanced unmanned search system vehicle, Tech Report 1245. Naval Ocean Systems Center, San Diego (1988)Google Scholar
  2. 2.
    Smith, C.S.: Design of marine structures in composite materials. Elsevier Applied Science, (1990)Google Scholar
  3. 3.
    Stevenson, P., Graham, D., Clayson, C.: The mechanical design and implementation of an autonomous submersible. J. Soc. For Underwater Technology. 23(1), 31–41 (1998)CrossRefGoogle Scholar
  4. 4.
    Graham, D.: Composite pressure hulls for deep ocean submersibles. Compos. Struct. 32(1–4), 331–343 (1995)CrossRefGoogle Scholar
  5. 5.
    Gruber, M.B., Lamontia, M.A., Smoot, M.A., Peros, V.: Buckling performance of hydrostatic compression loaded 7-inch diameter thermoplastic composite monocoque cylinders. J. Thermoplast. Compos. Mater. 8, 94–108 (1995)Google Scholar
  6. 6.
    Davies, P., Riou, L., Mazeas, F., Warnier, P.: Thermoplastic composite cylinders for underwater applications. J. Thermoplast. Compos. Mater. 18(5), 417–431 (2005). doi: 10.1177/0892705705054397 CrossRefGoogle Scholar
  7. 7.
    Hernández-Moreno, H., Collombet, F., Douchin, B., Choqueuse, D., Davies, P., González Velázquez, J.D.: Entire life time monitoring of filament wound composite cylinders using Bragg grating sensors: I. Adapted tooling and instrumented specimen, submitted to Applied Composite Materials, (2009)Google Scholar
  8. 8.
    Hernández-Moreno, H., Collombet, F., Douchin, B., Choqueuse, D., Davies, P., González Velázquez, `J.D.: Entire life time monitoring of filament wound composite cylinders using Bragg grating sensors: II. Process monitoring, submitted to Applied Composite Materials, (2009)Google Scholar
  9. 9.
    AFNOR standard XP X 10-812, Marine environment, oceanographic equipment, environmental test and recommendations for test equipment (1995)Google Scholar
  10. 10.
    Brower, D.V.: Structural properties measurements in deepwater oil and gas fields using an advanced fiber optic sensor monitoring system. SAMPE J. 41(5), 6–9 (2005)Google Scholar
  11. 11.
    Hinton, M.J., Soden, P.D., Kaddour, A.S.: Strength of composite laminates under biaxial loads. Appl. Comp. Mats. 3, 151–162 (1996). doi: 10.1007/BF00135053 CrossRefADSGoogle Scholar
  12. 12.
    Davies, P., Carlsson, L.A.: Influence of delamination on strength of externally pressurized glass/epoxy cylinders, AMD-Vol 235, Thick Composites for load bearing structures. ASME 97–104 (1999)Google Scholar
  13. 13.
    Soden, P.D., Hinton, M.J., Kaddour, A.S.: Biaxial test results for strength and deformation of a range of E-glass and carbon fibre reinforced composite laminates. Compos. Sci. Technol. 62, 1489–1514 (2002). doi: 10.1016/S0266-3538(02)00093-3 CrossRefGoogle Scholar
  14. 14.
    Gning, P.B., Tarfaoui, M., Collombet, F., Riou, L., Davies, P.: Damage development in thick composite tubes under impact loading and influence on implosion pressure: experimental observations. Compos., Part B: Eng. 36(4), 306–318 (2005)CrossRefGoogle Scholar
  15. 15.
    Soden, P.D., Kaddour, A.S., Hinton, M.J.: Recommendations for designers and researchers resulting from the world-wide failure exercise. Compos. Sci. Technol. 64(3–4), 589–604 (2004)CrossRefGoogle Scholar
  16. 16.
    Mistry, J., Gibson, G., Wu, Y.-S.: Failure of composite cylinders under combined external pressure and axial loading. Compos. Struct. 22(4), 193–200 (1992). doi: 10.1016/0263-8223(92)90055-H CrossRefGoogle Scholar
  17. 17.
    Blake, H.W., Starbuck, J.M.: A shear deflection theory for analysis of end plugs for external pressure tests of composite cylinders. ASTM STP. 1185, 113–136 (1994)Google Scholar
  18. 18.
    Davies, P., Le Flour, D.: Long term behaviour of fibre reinforced structures for deep sea applications Proc. 3rd Oilfield Engineering with Polymers conference, pp. 255–268. RAPRA, London (2001)Google Scholar
  19. 19.
    Hernández-Moreno, H., Douchin, B., Collombet, F., Choqueuse, D., Davies, P.: Influence of winding pattern on the mechanical behavior of filament wound composite cylinders under external pressure. Compos. Sci. Technol. 68(3–4), 1015–1024 (2008)CrossRefGoogle Scholar
  20. 20.
    Hernandez-Moreno, H.: Monitoring de la fabrication de tubes composites réalisés par enroulement filamentaire et comportement mécanique sous pression externe, PhD Thesis (in French), pp. 1–238. Paul Sabatier University, Toulouse (2006)Google Scholar
  21. 21.
    Kang, H.K., Park, J.S., Kang, D.H., Kim, C.U., Hong, C.S., Kim, C.G.: Strain monitoring of a filament wound composite tank using fiber Bragg grating sensors. Smart Mater. Struct. 11(6), 848–853 (2002)CrossRefADSGoogle Scholar
  22. 22.
    Mulle, M., Zitoune, R., Collombet, F., Olivier, P., Grunevald, Y.-H.: Thermal expansion of carbon–epoxy laminates measured with embedded FBGS—Comparison with other experimental techniques and numerical simulation. Compos., Part A: Appl. Sci. Manuf. 38(5), 1414–1424 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • H. Hernández-Moreno
    • 1
    • 2
  • F. Collombet
    • 1
  • B. Douchin
    • 1
  • D. Choqueuse
    • 3
  • P. Davies
    • 3
  1. 1.Université de Toulouse; INSA, UPS, Mines Albi, ISAE; ICA (Institut Clément Ader)IUT P. SabatierToulouseFrance
  2. 2.Instituto Politécnico NacionalESIME Unidad TicománMéxico D. F.México
  3. 3.IFREMERMaterials & Structures groupPlouzanéFrance

Personalised recommendations