Advertisement

Applied Composite Materials

, Volume 15, Issue 4–6, pp 207–225 | Cite as

Curing Deformation Analysis for the Composite T-shaped Integrated Structures

  • Jun Li
  • XueFeng Yao
  • YingHua Liu
  • ShenShen Chen
  • ZheJun Kou
  • Di Dai
Article

Abstract

Curing deformation of the T-shaped integrated structures is discussed in this paper. The mechanism of the deformation is analyzed for the T-shaped integrated structures, and a simple mathematical model for the deformation of the T-shaped integrated structures is established. Compare the mathematical model with the finite element analysis, the results show a good agreement. From the simple mathematical model, it can be seen that both cure shrinkage and thermal expansion are the major factors to produce the deformation of the typical T-shaped integrated structures and the tool-part contraction is the secondary factor. Therefore, it is important for the T-shaped integrated structures to select suitable fabrication process and the appropriate tool. The different geometry and material parameters of the T-shaped integrated structures are studied, and then a regression model is established.

Keywords

Cure Warpage deformation Spring-in Regression analysis 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (10772094).

References

  1. 1.
    Mahfuz, H., Prasun, M., Mrinal, S., et al.: Integral manufacturing of composite skin-stringer assembly and their stability analysis. Appl. Compos. Mater. 11, 155–171 (2004). doi: 10.1023/B:ACMA.0000026585.37973.c8 CrossRefGoogle Scholar
  2. 2.
    Wisnom, M.R., Gigliotti, M., Ersoy, N., Campbell, M., Potter, K.D.: Mechanisms generating residual stresses and distortion during manufacture of polymer-matrix composite structures. Compos. Part A 37(4), 522–529 (2006). doi: 10.1016/j.compositesa.2005.05.019 CrossRefGoogle Scholar
  3. 3.
    Fernlund, G., Rahman, N., Courdji, R., Bresslauer, M., Poursartip, A., Willden, K., Nelson, K.: Experimental and numerical study of the effect of cure cycle, tool surface, geometry, and lay-up on the dimensional fidelity of autoclave-processed composite parts. Compos. Part A 33(3), 341–351 (2002). doi: 10.1016/S1359-835X(01)00123-3 CrossRefGoogle Scholar
  4. 4.
    Bogetti, T.A.: Process-induced stress and deformation in thick-section thermoset composite laminates. J. Compos. Mater. 26(5), 626–660 (1992). doi: 10.1177/002199839202600502 CrossRefGoogle Scholar
  5. 5.
    Radford, D.W., Rennick, T.S.: Separating sources of manufacturing distortion in laminated composites. J. Reinf. Plast.Comp. 19(8), 621–641 (2000). doi: 10.1106/CRMP-ARE5-GVPP-0Y7N CrossRefGoogle Scholar
  6. 6.
    Fernlund, G.: Spring-in of angled sandwich panels. Compos. Sci. Technol. 65, 317–323 (2005). doi: 10.1016/j.compscitech.2004.08.001 CrossRefGoogle Scholar
  7. 7.
    Albert, C., Fernlund, G.: Spring-in and warpage of angled composite laminates. Compos. Sci. Technol. 62, 1895–1912 (2002). doi: 10.1016/S0266-3538(02)00105-7 CrossRefGoogle Scholar
  8. 8.
    Huang, C.K., Yang, S.Y.: Warping in advanced composite tools with varying angles and radii. Compos. Part A 28, 891–893 (1997). doi: 10.1016/S1359-835X(97)00045-6 CrossRefGoogle Scholar
  9. 9.
    Huang, C.K., Yang, S.Y.: Study on accuracy of angled advanced composite tools. Mater. Manuf. Process. 12(3), 473–486 (1997). doi: 10.1080/10426919708935158 CrossRefGoogle Scholar
  10. 10.
    Jung, W.K., Chu, W.S., Ahn, S.H.: Measurement and compensation of spring-back of a hybrid composite beam. J. Compos. Mater. 41(7), 851–864 (2007). doi: 10.1177/0021998306067064 CrossRefGoogle Scholar
  11. 11.
    Twigg, G., Poursartip, A., Fernlund, G.: Tool-part interaction in composites processing. Part I: experimental investigation and analytical model. Compos. Part A 35, 121–133 (2004). doi: 10.1016/S1359-835X(03)00131-3 CrossRefGoogle Scholar
  12. 12.
    Wang, J., Kelly, D.: Finite element analysis of temperature induced stresses and deformations of polymer composite components. J. Compos. Mater. 34(17), 1456–1471 (2000). doi: 10.1106/76G7-X9QM-C5JF-E4D5 CrossRefGoogle Scholar
  13. 13.
    Fernlund, G., Osooly, A., Poursartip, A., et al.: Finite element based prediction of processed-induced deformation of autoclaved composite structures using 2D process analysis and 3D structural analysis. Compos. Struct. 62, 223–234 (2003). doi: 10.1016/S0263-8223(03)00117-X CrossRefGoogle Scholar
  14. 14.
    Johnston, A., Vaziri, R., Poursartip, A.: A plane strain model for process-induced deformation of laminated composite structures. J. Compos. Mater. 35(16), 1435–1469 (2001)Google Scholar
  15. 15.
    Fernlund, G., Floyd, A.: Process analysis and tool compensation for curved composite L-angles. The 6th Canadian international composites conference p, 14–17 (2007)Google Scholar
  16. 16.
    Dong, C.S., Zhang, C., Liang, Z.Y., Wang, B.G.: Dimension variation prediction for composites with finite element analysis and regression modeling. Compos. Part A 35, 735–746 (2004). doi: 10.1016/j.compositesa.2003.12.005 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Jun Li
    • 1
  • XueFeng Yao
    • 1
  • YingHua Liu
    • 1
  • ShenShen Chen
    • 1
  • ZheJun Kou
    • 2
  • Di Dai
    • 2
  1. 1.Department of Engineering Mechanics, FMLTsinghua UniversityBeijingPeople’s Republic of China
  2. 2.Beijing Aeronautical Manufacturing Technology Research InstituteBeijingPeople’s Republic of China

Personalised recommendations