Advertisement

Applied Composite Materials

, Volume 14, Issue 1, pp 67–87 | Cite as

Damage Resistance of Composites Based on Glass Fibre Reinforced Low Styrene Emission Resins for Marine Applications

  • Y. Perrot
  • C. Baley
  • Y. Grohens
  • P. Davies
Article

Abstract

Composites based on glass fiber reinforced low styrene emission polyester resins have been widely used over the last 10 years, in order to meet increasingly strict safety regulations, particularly in the pleasure boat industry. Previous studies of their mechanical properties suggested that although these resins are generally more brittle than traditional orthophthalic polyester resins this did not adversely affect the properties commonly used for quality control (short beam shear and tensile failure strength of mat reinforced composites). In the present paper results from a more detailed study of damage behaviour are presented. Tests include fracture toughness (K Ic ) tests on resins, fibre/matrix interface energy, detection of composite damage initiation in tension by acoustic emission, composite delamnation (G Ic and G IIc ), and low energy impact. Overall the results indicate that the low failure strain of low styrene emission resins results in significantly lower composite damage resistance.

Key words

glass fibers unsaturated polyester styrene emission damage initiation interface properties 

Notes

Acknowledgments

The authors acknowledge the support of the FIN (Fédération des Industries Nautiques) and the Bretagne region for the PhD work of Yves Perrot. The contribution of Luc Riou of Ifremer to the impact studies is also gratefully acknowledged.

References

  1. 1.
    Baley, C., Perrot, Y., Davies, P., Bourmaud, A., Grohens, Y.: Mechanical properties of composites based on low styrene emission polyester resins for marine applications. Appl. Compos. Mater. 13, 1–22 (2006)CrossRefGoogle Scholar
  2. 2.
    ISO 135 86: Plastics-Determination of fracture toughness (GIC and KIC)-Linear elastic fracture mechanics (LEFM) approach. (2000)Google Scholar
  3. 3.
    Williams, J.G.: Stress analysis of polymers. Ellis Horwood series in engineering science, 2nd edGoogle Scholar
  4. 4.
    Miller, B., Muri, P., Rebenfeld, L.: A microbond method for determination of the shear strength of a fibre/resin interface. Compos. Sci. Technol. 28, 17–32 (1987)CrossRefGoogle Scholar
  5. 5.
    Scheer, R.J., Nairn J.A.: A comparison of several fracture mechanics methods for measuring interfacial toughness with microbond tests. J. Adhes. 53, 45–68 (1995)Google Scholar
  6. 6.
    ISO 150 24-2001: Fibre-reinforced plastic composites-Determination of mode I interlaminar fracture toughness, GIC, for unidirectionally reinforced materialsGoogle Scholar
  7. 7.
    Berry, J.P.: Determination of fracture surface energies by the cleavage technique. J. Appl. Physi. 34, (1963)Google Scholar
  8. 8.
    Martin, R.H., Davidson, B.D.: Mode II fracture toughness evaluation using a four point bend end notched flexure test. In: 4th International on Deformation and Fracture of Composites, pp. 243–252. Manchester (1997)Google Scholar
  9. 9.
    Compston, P., Jar, P.-Y.B., Davies, P.: Matrix effect on the static and dynamic interlaminar fracture toughness of glass-fiber marine composites. Compos., Part B 29B, 505–516 (1998)CrossRefGoogle Scholar
  10. 10.
    Baley, C., Davies, P., Grohens, Y., Dolto, G.: Application of interlaminar tests to marine composites. A review. Appl. Compos. Mater. 11, 96–126 (2004)Google Scholar
  11. 11.
    Diran, X., Hilaire, B., Soulier, J.P., Nardin, M.: Interfacial shear strength in glass-fibre/vinylester-resin composites. Compos. Sci. Technol. 56, 533–539 (1996)CrossRefGoogle Scholar
  12. 12.
    Venkatakrishnaiah, S., Dharani, L.R.: Interfacial stresses in a microbond pull-out specimen. Eur. J. Mech. A, Solids 13, 311–325 (1994)Google Scholar
  13. 13.
    Liu, C.H., Nairn, J.A.: Analytical and experimental methods for a fracture mechanics interpretation of microbond test including the effects of friction and thermal stresses. Int. J. Adhes. Adhes. 19, 59–70 (1999)CrossRefGoogle Scholar
  14. 14.
    Ash, J.T., Cross, W.M., Svalstad, D., Kellar, J.J., Kjerengtroen, L.: Finite element evaluation of the microbond test: meniscus effect, interphase region, and vise angle. Compos. Sci. Technol. 63, 641–651 (2003)CrossRefGoogle Scholar
  15. 15.
    Roselli, F., Santare, M.H.: Comparison of the short beam shear (SBS) and interlaminar shear device (ISD) Tests. Compos., Part A 28A, 587–594 (1997)CrossRefGoogle Scholar
  16. 16.
    Hoecker, F., Friedrich, K., Blumberg, H., Karger-Kocsis, J.: Effects of fiber/matrix adhesion on off-axis mechanical response in carbon-fiber/epoxy-resin composites. Compos. Sci. Technol. 54, 317–327 (1995)CrossRefGoogle Scholar
  17. 17.
    Herrera-Franco, P.J., Drazl, L.T.: Comparison of methods for the measurement of fibre/matrix adhesion in composites. Composites 23, 2–27 (1992)CrossRefGoogle Scholar
  18. 18.
    Davies, P., Petton, D.: An experimental study of scale effects in marine composites. Compos., Part A 30, 267–275 (1999)CrossRefGoogle Scholar
  19. 19.
    Meraghni, F., Benzeggagh, M.L.: Micromechanical modelling of matrix degradation in randomly oriented discontinuous-fibre composites. Compos. Sci. Technol. 55, 171–186 (1995)CrossRefGoogle Scholar
  20. 21.
    Yamini, S., Young, R.J.: Stability of crack propagation in epoxy resins. Polymer 18, 1075–1080 (1977)CrossRefGoogle Scholar
  21. 22.
    Kinloch, A.J., Williams, J.G.: Crack blunting mechanisms in polymers. J. Mater. Sci. 15, 987–996 (1980)CrossRefGoogle Scholar
  22. 23.
    Brunellière, O., Davies, P.: Effects of defects on interlaminar fracture of glass fibre reinforced polyester composites. J. Mater. Sci. Lett. 12, 427–429 (1993)CrossRefGoogle Scholar
  23. 24.
    Davies, P., Cantwell, W., Moulin, C., Kausch, H.H.: A study of the delamination resistance of IM6/PEEK composites. Compos. Sci. Technol. 36, 153–166 (1989)CrossRefGoogle Scholar
  24. 25.
    Prel, Y.J., Davies, P., Benzeggagh, M.L., De Charentenay, F.X.: Mode I and mode II delamination of thermosetting and thermoplastic composites. In: 2nd ASTM Symposium on Fatigue and Fracture, pp. 69–251. Cincinnati, ASTM STP 1012 (1989)Google Scholar
  25. 26.
    Feih, S., Wei, J., Kingshott, P., Sorensen, B.F.: The influence of fibre sizing on the strength and fracture toughness of glass fibre composites. Compos., Part A 36, 245–255 (2005)CrossRefGoogle Scholar
  26. 27.
    Davies, P., Blackman, B.R.K., Brunner, A.J.: Standard test methods for delamination resistance of composite materials: current status. Appl. Compos. Mater. 5, 345–364 (1998)CrossRefGoogle Scholar
  27. 28.
    Hunston, D.L.: Composite interlaminar fracture: Effect of matrix fracture energy. Comp. Tech. Rev., ASTM 6 4, 176–180 (1984)Google Scholar
  28. 29.
    Yee, A.F.: Modifying matrix materials for tougher composites. In: Johnston, N.J. (ed.) ASTM STP, 937, pp. 383–396. (1987)Google Scholar
  29. 30.
    Masters, J.E.: Correlation of impact and delamination resistance in interleafed laminates. In: Proc. ICCM6 vol. 3, pp. 96–107. (1987)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Université de Bretagne SudLorient, CedexFrance
  2. 2.IFREMER, Materials & Structures group (ERT/MS)PlouzanéFrance

Personalised recommendations