Study of Structural Morphology of Hemp Fiber from the Micro to the Nanoscale

Article

Abstract

The focus of this work has been to study how high pressure defibrillation and chemical purification affect the hemp fiber morphology from micro to nanoscale. Microscopy techniques, chemical analysis and X-ray diffraction were used to study the structure and properties of the prepared micro and nanofibers. Microscopy studies showed that the used individualization processes lead to a unique morphology of interconnected web-like structure of hemp fibers. The nanofibers are bundles of cellulose fibers of widths ranging between 30 and 100 nm and estimated lengths of several micrometers. The chemical analysis showed that selective chemical treatments increased the α-cellulose content of hemp nanofibers from 75 to 94%. Fourier transform infrared spectroscopy (FTIR) study showed that the pectins were partially removed during the individualization treatments. X-ray analysis showed that the relative crystallinity of the studied fibers increased after each stage of chemical and mechanical treatments. It was also observed that the hemp nanofibers had an increased crystallinity of 71 from 57% of untreated hemp fibers.

Key words

cellulose nanofibers hemp microfibrils nanostructures characterization 

References

  1. 1.
    Bhatnagar, A., Sain, M.: Processing of cellulose nanofiber-reinforced composites. J. Reinf. Plast. Compos. 24, 1259–1268 (2005)CrossRefGoogle Scholar
  2. 2.
    Chakraborty, A., Sain, M., Kortschot, M.: Reinforcing potential of wood pulp-derived microfibres in a PVA matrix. Holzforschung 60(1), 53–58 (2006)CrossRefGoogle Scholar
  3. 3.
    Eichhorn, S.J., Baillie, C.A., Zafereiropoulos, N., Mwaikambo, L.Y., Ansell, M.P., Dufresne, A., Entwistle, K.M., Herrera-Franco, P.J., Escamilla, G.C., Groom, L., Hughes, M., Hill, C., Rials, T.G., Wild, P.M.: Review-current international research into cellulosic fibres and composites. J. Mater. Sci. 36, 2107–2131 (2001)CrossRefGoogle Scholar
  4. 4.
    Chakraborty, A., Sain, M., Kortschot, M.: Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59(1), 102–107 (2005)CrossRefGoogle Scholar
  5. 5.
    Nakagaito, A.N., Yano, H.: The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl. Phys., A 78, 547–552 (2004)CrossRefGoogle Scholar
  6. 6.
    Nakagaito, A.N., Yano, H.: Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl. Phys., A 80, 155–159 (2005)CrossRefGoogle Scholar
  7. 7.
    Sain, M., Bhatnagar, A.: Manufacturing of nanofibrils from natural fibres, agro based fibres and root fibres. CA Patent Appl. 2,437,616 (2003)Google Scholar
  8. 8.
    Hepworth, D.G., Bruce, D.M.: The mechanical properties of a composite of a composite manufactured from non-fibrous vegetable tissue and PVA. Compos., Part A Appl. Sci. Manuf. 31, 283–285 (2000)CrossRefGoogle Scholar
  9. 9.
    Gindl, W., Keckes, J.: Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Compos. Sci. Technol. 64, 2407–2413 (2004)CrossRefGoogle Scholar
  10. 10.
    Dinand, E., Chanzy, H., Vignon, M.R.: Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocoll. 13, 275–283 (1999)CrossRefGoogle Scholar
  11. 11.
    Canadian hemp alliances (2006) http://www.hemptrade.ca/en/public/about-hemp.ihtml. Cited 13 Aug 2006
  12. 12.
    Saheb, D.N., Jog, J.P.: Natural fiber polymer composites: a review. Adv. Polym. Technol. 18, 351–363 (1999)CrossRefGoogle Scholar
  13. 13.
    Oksman, K., Mathew, A.P., Bondeson, D., Kvien, I.: Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos. Sci. Technol. 66(15), 2776–2784 (2006)CrossRefGoogle Scholar
  14. 14.
    McCann, M.C., Wells, B., Roberts, K.: Direct visualization of cross-links in the primary plant cell wall. J. Cell Sci. 96(2), 323–334 (1990)Google Scholar
  15. 15.
    McCann, M.C., Wells, B., Roberts, K.: Complexity in spatial localization and length distribution of plant cell wall matrix polysaccharides. J. Cell Sci. 166, 123–136 (1993)Google Scholar
  16. 16.
    Clowes, F.A.L., Juniper, B.E.: Plant cell. In: Burnett, J.H., Phil, M.A.D. (eds.) vol. 8, pp. 207–209. Blackwell Scientific Publications, Oxford (1968)Google Scholar
  17. 17.
    Stamboulis, A., Baillie, C.A., Peijs, T.: Effects of environmental conditions on mechanical and physical properties of flax fibres. Compos., Part A Appl. Sci. Manuf. 32, 1105–1115 (2001)CrossRefGoogle Scholar
  18. 18.
    Dinand, E., Chanzyi, H., Vignon, M.R., Maureaux, A., Vincent, I.: Microfibrillated cellulose and method for preparing a microfibrillated cellulose. US Patent 5,964,983 (1999)Google Scholar
  19. 19.
    Yoshinaga, F., Tonouchi, N., Watanabe, K.: Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci. Biotechnol. Biochem. 61, 219–224 (1997)CrossRefGoogle Scholar
  20. 20.
    Krieger, J.: Bacterial cellulose near commercialization. Chem. Eng. News 68, 35–37 (1990)Google Scholar
  21. 21.
    Bondeson, D., Kvien, I., Oksman, K.: Optimization of the Isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13, 171–180 (2006)CrossRefGoogle Scholar
  22. 22.
    Wan, W.K., Hutter, J.L., Millon, L., Guhados, G.: Bacterial cellulose and its nanocomposites for biomedical applications. In: Oksman, K., Sain, M. (eds.) Cellulose Nanocomposites, pp. 221–241. Oxford University Press, Washington, DC (2006)Google Scholar
  23. 23.
    Ishihara, M., Yamanaka, S.: Modified bacterial cellulose. US Patent 6,627,419 (2002)Google Scholar
  24. 24.
    Oksman, K., Mathew, A.P., Bondeson, D., Kvien, I.: Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos. Sci. Technol. 66(15), 2776–2784 (2006)CrossRefGoogle Scholar
  25. 25.
    Taniguchi, T., Okamura, K.: New films produced from mircofibrillated natural fibres. Polym. Int. 47, 291–294 (1998)CrossRefGoogle Scholar
  26. 26.
    Mustată, A.: Factors influencing fiber–fiber friction in the case of bleached flax. Cellul. Chem. Technol. 31, 405–413 (1997)Google Scholar
  27. 27.
    Kvien, I., Tanem, B.S., Oksman, K.: Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6, 3160–3165 (2005)CrossRefGoogle Scholar
  28. 28.
    Kirby, A.R., Gunning, A.P., Waldron, K.W., Morris, V.J., Ng, A.: Visualization of plant cell walls by atomic force microscopy. Biophys. J. 70, 1138–1143 (1996)CrossRefGoogle Scholar
  29. 29.
    van der Wel, N.N., Putman, C.A.J., van Noort, S.J.T., de Grooth, B.G., Emons, A.M.C.: Atomic force microscopy of pollen grains, cellulose microfibrils, and protoplasts. Protoplasma 194, 29–39 (1996)CrossRefGoogle Scholar
  30. 30.
    Thimm, J.C., Burritt, C.J., Ducker, W.A., Melton, L.D.: Celery (Apium graveolens L.) parenchyma cell walls examined by atomic force microscopy: effect of dehydration on cellulose microfibrils. Planta 212, 25–32 (2000)CrossRefGoogle Scholar
  31. 31.
    Shimbun, S.K.: Senshoku nouhau no rironka [A Theorisation of Dyeing Know-How]. Japan (1985)Google Scholar
  32. 32.
    Annergren, G., Boman, M., Sandström, P.: Principal of multi-stage bleaching of softwood kraft pulp. In: Proceedings of 1998 international pulp bleaching conference, Helsinki, Finland, 1–5 June (1998)Google Scholar
  33. 33.
    Sain, M., Bhatnagar, A.: Manufacturing of nano-sized fibers from renewable feedstock. US Patent Appl. 60,512,912 (2004)Google Scholar
  34. 34.
    Sain, M.: Solid phase dispersion and processing of micro- and nano-cellulosic fibres in plastic phase to manufacture bio-nanocomposites products of commercial interests. CA Patent Appl. 2,559,844 (2006)Google Scholar
  35. 35.
    Zobel, B.J., Stonecypher, R., Browne, C., Kellison, R.C.: Variation and inheritance of cellulose in southern pines. Tappi 49, 383–387 (1966)Google Scholar
  36. 36.
    Stamm, A.J.: Wood and Cellulose Science. Ronald, New York (1964)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.Centre for Biocomposites and Biomaterials Processing, Faculty of ForestryUniversity of Toronto Earth and Science CentreTorontoCanada
  2. 2.Manufacturing and Design of Wood and BionanocompositesLuleå University of TechnologySkellefteåSweden

Personalised recommendations