Applied Composite Materials

, Volume 13, Issue 1, pp 1–22 | Cite as

Mechanical Properties of Composites Based on Low Styrene Emission Polyester Resins for Marine Applications

  • Christophe BaleyEmail author
  • Y. Perrot
  • Peter Davies
  • A. Bourmaud
  • Yves Grohens


Glass fibre reinforced polyester composites are used extensively for hulls and decks of pleasure boats. Boat-builders must optimise manufacturing technology, not only with respect to mechanical properties but also limiting volatile organic compounds (VOC) emissions. One way to achieve this is through modified polyester resin formulations such as low styrene content, low styrene emission or combinations of these. The resin matrix selection procedure is based on design specification (mechanical behaviour) but also manufacturing requirements and cost considerations. For this application post-cure is rarely used so it is important to optimise curing conditions. In this study the influence of the curing cycle on mechanical properties was examined first for two polyester resins. Then for one cycle (16 h at 40°C) the properties of eight resins have been determined. Significant differences in failure strain are observed, from 0.9% to 3.3%. The resins with improved VOC performance are the most brittle. The transverse tensile behaviour of these resins in composites with unidirectional glass fibre reinforcement and the limit of linearity for composites with glass mat both depend on these failure strains. These results are discussed in terms of admissible composite strains for boat design.

Key words

composite materials unsaturated polyester transverse tensile mechanical properties styrene emission glass fibres unidirectional mat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Davies, P. and Petton, D., ‘An Experimental Study of Scale Effects in Marine Composites’, Composites Part A 30, 1999, 267–275.CrossRefGoogle Scholar
  2. 2.
    ISO/DIS 12215, Hull Construction – Scantlings – Part 5: Design Pressures for Monohull, Design Stress, Scantling Determination, 2004.Google Scholar
  3. 3.
    Mouritz, A. P., Gellert, E., Burchill, P. and Challis, K., ‘Review of Advanced Composite Structures for Naval Ships and Submarines’, Composite Structures 53, 2001, 21–41.CrossRefGoogle Scholar
  4. 4.
    Tucker, R., Compston, P. and Jar, P. Y. B., ‘The Effect of Post-Cure Duration on the Mode I Interlaminar Fracture Toughness of Glass-Fibre Reinforced Vinylester’, Composites Part A 32, 2001, 129–134.CrossRefGoogle Scholar
  5. 5.
    Compston P, Jar P.-Y. B. and Davies P., ‘Matrix Effect on the Static and Dynamic Interlaminar Fracture Toughness of Glass-Fiber Marine Composites’, Composites, Part B, 29B, 1998, 505–516.CrossRefGoogle Scholar
  6. 6.
    Baley, C., Davies, P., Grohens, Y. and Dolto, G., ‘Application of Interlaminar Tests to Marine Composites. A review’, Applied Composite Materials 11, 2004, 96–126.Google Scholar
  7. 7.
    Pascault, J. P., Sautereau, H., Verdu, J. and Williams, R.(eds.), Thermosetting Polymers, Mace1 Dekker, Inc. New York, 2002.Google Scholar
  8. 8.
    Skrifvars, M., Berglund, L. and Ericson, M., ‘Microscopy of the Morphology in Low Styrene Emission Glass Fiber/Unsaturated Polyester Laminates’, Journal of Applied Polymer Science 71, 1999, 1555–1562.CrossRefGoogle Scholar
  9. 9.
    Gibson, R. F. (ed.), Principles of Composites Material Mechanics, McGraw-Hill, New York, 1994.Google Scholar
  10. 10.
    Benzarti, K., Cangemi, L. and Dal Maso, F., ‘Transverse Properties of Unidirectional Glass/Epoxy Composites: Influence of Fibre Surface Treatments’, Composites Part A 32, 2001, 197–206.CrossRefGoogle Scholar
  11. 11.
    de Kok, J. M. M. and Meijer, H. E. H., ‘Deformation, Yield and Fracture of Unidirectional Composites in Transverse Loading. 2. Influence of Fibre–Matrix Adhesion’, Composites Part A 30, 1999, 917–932.CrossRefGoogle Scholar
  12. 12.
    Keusch, S. and Haessler, R., ‘Influence of Surface Treatment of Glass Fibres on the Dynamic Mechanical Properties of Resin Composites’, Composites Part A 30, 1999, 997–1002.CrossRefGoogle Scholar
  13. 13.
    de Kok, J. M. M. and Meijer, H. E. H., ‘Deformation, Yield and Fracture of Unidirectional Composites in Transverse loading. 1. Influence of Volume Fraction and Test-Temperature’, Composites Part A 30, 1999, 905–916.CrossRefGoogle Scholar
  14. 14.
    Zhang, L., Ernst, L. J. and Brouwer, H. R., ‘Transverse Behaviour of a Unidirectional Composite (Glass Fibre Reinforced Unsaturated Polyester). Part I. Influence of Fibre Packing Geometry’, Mechanics of Materials 27, 1998, 13–26.CrossRefGoogle Scholar
  15. 15.
    Gusen, A. A., Hine, P. J. and Ward, I. M., ‘Fiber Packing and Elastic Properties of a Transversely Random Unidirectional Glass/Epoxy Composite’, Composite Science and Technology 60, 2000, 535–541.CrossRefGoogle Scholar
  16. 16.
    Zhang, L., Ernst, L. J. and Brouwer, H. R., ‘Transverse Behaviour of a Unidirectional Composite (Glass Fibre Reinforced Unsaturated Polyester). Part II. Influence of Shrinkage Strains. Geometry’, Mechanics of Materials 27, 1998, 37–61.CrossRefGoogle Scholar
  17. 17.
    Sjögren, B. A. and Berglund, L. A., ‘The Effects of Matrix and Interface on Damage in GRP Cross-Ply Laminates’, Composites Science and Technology 60, 2000, 9–21.CrossRefGoogle Scholar
  18. 18.
    Smith, C. S., Design of Marine Structures in Composite Materials, Elsevier Applied Science, London, 1990.Google Scholar
  19. 19.
    Bowles, K. J. and Frimpong, S., ‘Void Effects on the Interlaminar Shear Strength of Unidirectional Graphite-Fiber-Reinforced Composites’, Journal of Composite Materials 26(10), 1991, 1487–1509.CrossRefGoogle Scholar
  20. 20.
    Wisnom, M. R., Reynolds, T. and Gwilliam, N., ‘Reduction in Interlaminar Shear Strength by Discrete and Distributed Voids’, Composites Science and Technology 56, 1996, 93–101.CrossRefGoogle Scholar
  21. 21.
    Chamis, C. C., ‘Simplified Composite Micromechanics Equations for Hygral, Thermal, and Mechanical Properties’, SAMPE Quarterly, 1984, 14–23.Google Scholar
  22. 22.
    Kies, J. A., Maximum Strains in the Resin of Fibre Glass Composites, US Naval Research Laboratory Report N° 5752, 1962.Google Scholar
  23. 23.
    Fitoussi, J., Guo, G. and Baptiste, D., ‘A Statistical Micromechanical Model of Anisotropic Damage for SMC Composites’, Composites Science and Technology 58, 1998, 759–763.CrossRefGoogle Scholar
  24. 24.
    Meraghni, F., Desmuraux, F. and Benzeggagh, M. L., ‘Implementation of a Constitutive Micro-Mechanical Model for Damage Analysis in Glass Mat Reinforced Composite Structures’, Composites Science and Technology 62, 2002, 2087–2097.CrossRefGoogle Scholar
  25. 25.
    Meraghni, F., Blakeman, C. J. and Benzeggagh, M. L., ‘Effect of Inter-Facial Decohesion on Stiffness Reduction in a Random Discontinuous-Fibre Composite Containing Matrix Microcracks’, Composites Science and Technology 56, 1996, 541–555.CrossRefGoogle Scholar
  26. 26.
    Meraghni, F. and Nenzeggagh, M. L., ‘Micromechanical Modelling of Matrix Degradation in Randomly Oriented Discontinuous-Fibre Composites’, Composites Science and Technology 55, 1995, 171–186.CrossRefGoogle Scholar
  27. 27.
    Bourban, P. E., Cantwell, W. J., Kausch, H. H. and Youd, S. J., Damage Initiation and Development in Chopped Strand Mat Composites, Proc ICCM-9, Madrid, July 1993, pp. 79–86.Google Scholar
  28. 28.
    Piggott, M. R., Load Bearing Fibre Composites, Pergamon, Oxford, 1980.Google Scholar
  29. 29.
    Piggott, M. R., ‘How the Interface Controls the Properties of Fibre Composites’, Progress in Science and Engineering of Composites, ICCM IV, Tokyo, 1982.Google Scholar
  30. 30.
    Gay, D. and Joubert, F., ‘Isotropie de Rigidité et Quasi-Isotropie de Re´sistance des Stratifie´s à Orientations Périodiques’, Revue des Composites et des Matériaux Avancés 4(2), 1994, 241–260.Google Scholar
  31. 31.
    Autran, M., Pauliard, R., Gautier, L., Mortaigne, B., Mazeas, F. and Davies P., ‘Influence of Mechanical Stresses on the Hydrolytic Aging of Standard and Low Styrene Unsaturated Polyester Composites’, Journal of applied Polymer Science 84, 2002, 2185–2195.CrossRefGoogle Scholar
  32. 32.
    Davies, P., Mazéas, F. and Casari, P., ‘Sea Water Aging of Glass Reinforced Composites’, J. Comp. Materials 35(15), 2001, 1343–1372.Google Scholar
  33. 33.
    Gautier, L., Mortaigne, B. and Bellenger, V., ‘Interface Damage Study of Hydrothermally Aged Glass Fibre Reinforced Polyester Composites’, Composites Science and Technology 59, 1999, 2329–2337.CrossRefGoogle Scholar
  34. 34.
    Baley, C., ‘Estimation de la Valeur Réelle du Coefficient de Sécurité de la Coque d’un Voilier en Matériaux Composites à Partir du Traitement des Données Enregistrées en Cours de Navigation’, Actes de la 96 ième session de l’ATMA (Association Technique Maritime et Aéronautique), Paris, 1996, 23 pages.Google Scholar
  35. 35.
    Gibbs and Cox, Marine Design Manual for Fiberglass Reinforced Plastics, McGraw-Hill Book Company, New York, 1960.Google Scholar
  36. 36.
    Mayer, R. M., Design with Reinforced Plastics. A Guide for Engineers and Designer, The Design Council, London, 1993.Google Scholar
  37. 37.
    NFT 57 900, Reservoirs et Appareils en Matières Plastiques Renforcées. Code de Construction, Norme Française, Edité par 1’ Afnor, 1987.Google Scholar
  38. 38.
    Manera, M., Massot, J. J. and Morel, G., Manuel de Calcul Des Composites Verre-Resine, Pluralis, Paris, 1988.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Christophe Baley
    • 1
    Email author
  • Y. Perrot
    • 1
  • Peter Davies
    • 2
  • A. Bourmaud
    • 1
  • Yves Grohens
    • 1
  1. 1.Université de Bretagne Sud, L2PICLorient CedexFrance
  2. 2.IFREMERMaterials & Structures group (ERT/MS)PlouzanéFrance

Personalised recommendations