Applied Composite Materials

, Volume 12, Issue 3–4, pp 229–246 | Cite as

Cellular Truss Core Sandwich Structures

  • David J. Sypeck


Sandwich structures with open cell truss cores are a relatively new class of multifunctional material systems that can be made using affordable deformation, assembly and joining processes. A variety of cellular core architectures have recently been made from wrought metal alloys using inexpensive textile and perforated sheet methods. Here, the design, fabrication and properties for these types of structures is reviewed.


sandwich structure cellular solid multifunctional alloy brazing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Mestral, G., ‘Velvet Type Fabric and Method of Producing Same’, U.S. Patent No. 2,717,437, 13 Sept 1955. Google Scholar
  2. 2.
    Kudva, J. N., Sanders, B., Pinkerton-Florance, J. and Garcia, E., ‘The DARPA/AFRL/NASA Smart Wing Program — Final Overview’, in Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies, A.-M. R. McGowan (ed.), Proceedings of SPIE, Vol. 4698, 2002, pp. 37–43. Google Scholar
  3. 3.
    Gibson, L. J. and Ashby, M. F., Cellular Solids, Structure and Properties, 2 Edition, Cambridge University Press, Cambridge, 1997. Google Scholar
  4. 4.
    Sypeck, D. J., 2002 ‘Constructed Cellular Metals’, in A. Ghosh, T. Sanders and D. Claar (eds.), Processing and Properties of Lightweight Cellular Metals and Structures, TMS Conference Proceedings, TMS, Warrendale, pp. 35–45. Google Scholar
  5. 5.
    Ashby, M. F., Evans, A. G., Fleck, N. A., Gibson, L. J., Hutchinson, J. W. and Wadley, H. N. G., Metal Foams: A Design Guide, Butterworth-Heinemann, Boston, 2000. Google Scholar
  6. 6.
    Evans, A. G., Hutchinson, J. W. and Ashby, M. F., ‘Multifunctionality of Cellular Metal Systems’, Progress in Material Science 43, 1999, 171. Google Scholar
  7. 7.
    Evans, A. G., Hutchinson, J. W., Fleck, N. A., Ashby, M. F. and Wadley, H. N. G., ‘The Topological Design of Multifunctional Cellular Metals’, Progress in Material Science 46, 2001, 309. Google Scholar
  8. 8.
    Sypeck, D. J. and Wadley, H. N. G., ‘Multifunctional Microtruss Laminates: Textile Synthesis and Properties’, Journal of Materials Research 16(3), 2001, 890. Google Scholar
  9. 9.
    Sypeck, D. J., Wadley, H. N. G., Bart-Smith, H., Koehler, S. and Evans, A. G., ‘Structure and Deformation of Aluminum Foams Through Computed Tomography’, in Review of Progress in Quantitative Nondestructive Evaluation 17, D. O. Thompson and D. E. Chimenti (eds.), Plenum Press, New York, 1998, pp. 1443–1450. Google Scholar
  10. 10.
    Bart-Smith, H., Bastawros, A.-F., Mumm, D. R., Evans, A. G., Sypeck, D. J. and Wadley, H. N. G., ‘Compressive Deformation and Yielding Mechanisms in Cellular Al Alloys Determined Using X-Ray Tomography and Surface Strain Mapping’, Acta Materialia 46(10), 1998, 3583. Google Scholar
  11. 11.
    Sypeck, D. J. and Wadley, H. N. G., ‘Cellular Metal Truss Core Sandwich Structures’, Special Issue, Advanced Engineering Materials 4(10), 2002, 759. Google Scholar
  12. 12.
    Sypeck, D. J. ‘Wrought Aluminum Truss Core Sandwich Structures’, Metall. Trans. B, 36B(1), 2005, 125–131. Google Scholar
  13. 13.
    Lakes, R., ‘Materials with Structural Hierarchy’, Nature 361, 1993, 511. Google Scholar
  14. 14.
    Fuller, R. B., ‘Building Construction’, U.S. Patent, No. 2,682,235, 29 June 1954. Google Scholar
  15. 15.
    Fuller, R. B., ‘Synergetic Building Construction’, U.S. Patent, No. 2,986,241, 30 May 1961. Google Scholar
  16. 16.
    Wicks, N. and Hutchinson, J. W., ‘Optimal Truss Plates’, International Journal of Solids and Structures 38, 2001, 5165. Google Scholar
  17. 17.
    Deshpande, V. S. and Fleck, N. A., ‘Collapse of Truss Core Sandwich Beams in 3-Point Bending’, International Journal Solids and Structures 38, 2001, 6275. Google Scholar
  18. 18.
    Chiras, S., Mumm, D. R., Evans, A. G., Wicks, N., Hutchinson, J. W., Dharmasena, K., Wadley, H. N. G. and Fichter, S., ‘The structural performance of near-optimized truss core panels’, International Journal of Solids and Structures 39, 2001, 4093. Google Scholar
  19. 19.
    Renauld, M. L., Giamei, A. F., Thompson, M. S. and Priluck, J., in Porous and Cellular Materials for Structural Applications, Mat. Res. Soc. Symp. Proc., Vol. 521, Pittsburgh, PA, 1998, p. 109. Google Scholar
  20. 20.
    Brittain, S. T., Sugimura, Y., Schueller, O. J. A., Evans, A. G. and Whitesides, G. M., ‘Fabrication and Mechanical Performance of a Mesoscale Space-Filling Truss System’, Journal of Microelectromechanical Systems 10(1), 2001, 113. Google Scholar
  21. 21.
    Ko, F. K., in Textile Structural Composites, T.-W. Chou and F. K. Ko (eds.), Elsevier, Amsterdam, 1989, p. 129. Google Scholar
  22. 22.
    Tian, J., Kim, T., Lu, T. J., Hodson, H. P., Queheillalt, D. T., Sypeck, D. J. and Wadley, H. N. G., ‘The Effects of Topology Upon Fluid Flow and Heat Transfer Within Cellular Copper Structures’, International Journal of Heat and Mass Transfer 47, 2004, pp. 3171–3186. Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Aerospace Engineering DepartmentEmbry-Riddle Aeronautical UniversityDaytona BeachUSA

Personalised recommendations