Acta Biotheoretica

, Volume 67, Issue 4, pp 273–297 | Cite as

The Uroboros Theory of Life’s Origin: 22-Nucleotide Theoretical Minimal RNA Rings Reflect Evolution of Genetic Code and tRNA-rRNA Translation Machineries

  • Jacques Demongeot
  • Hervé SeligmannEmail author
Regular Article


Theoretical minimal RNA rings attempt to mimick life’s primitive RNAs. At most 25 22-nucleotide-long RNA rings code once for each biotic amino acid, a start and a stop codon and form a stem-loop hairpin, resembling consensus tRNAs. We calculated, for each RNA ring’s 22 potential splicing positions, similarities of predicted secondary structures with tRNA vs. rRNA secondary structures. Assuming rRNAs partly derived from tRNA accretions, we predict positive associations between relative secondary structure similarities with rRNAs over tRNAs and genetic code integration orders of RNA ring anticodon cognate amino acids. Analyses consider for each secondary structure all nucleotide triplets as potential anticodon. Anticodons for ancient, chemically inert cognate amino acids are most frequent in the 25 RNA rings. For RNA rings with primordial cognate amino acids according to tRNA-homology-derived anticodons, tRNA-homology and coding sequences coincide, these are separate for predicted cognate amino acids that presumably integrated late the genetic code. RNA ring secondary structure similarity with rRNA over tRNA secondary structures associates best with genetic code integration orders of anticodon cognate amino acids when assuming split anticodons (one and two nucleotides at the spliced RNA ring 5′ and 3′ extremities, respectively), and at predicted anticodon location in the spliced RNA ring’s midst. Results confirm RNA ring homologies with tRNAs and CDs, ancestral status of tRNA half genes split at anticodons, the tRNA-rRNA axis of RNA evolution, and that single theoretical minimal RNA rings potentially produce near-complete proto-tRNA sets. Hence genetic code pre-existence determines 25 short circular gene- and tRNA-like RNAs. Accounting for each potential splicing position, each RNA ring potentially translates most amino acids, realistically mimicks evolution of the tRNA-rRNA translation machinery. These RNA rings ‘of creation’ remind the uroboros’ (snake biting its tail) symbolism for creative regeneration.


Stem-loop hairpins Mitochondrial light strand replication origin Ribosome Amino acid-codon stereo-chemical interaction Amino acid-codon assignment tRNA 



  1. Agmon I (2009) The dimeric proto-ribosome: structural details and possible implications on the origin of life. Int J Mol Sci 10:2921–2934CrossRefGoogle Scholar
  2. Ahmed A, Frey G, Michel CJ (2007) Frameshift signals in genes associated with circular code. Silico Biol 7:155–168Google Scholar
  3. Ahmed A, Frey G, Michel CJ (2010) Essential molecular functions associated with the circular code evolution. J Theor Biol 264:613–622CrossRefGoogle Scholar
  4. Amzallag GN (2016) The serpent as a symbol of primeval Yahvism. Semitica 58:207–236Google Scholar
  5. Arquès DG, Michel CJ (1996) A complementary circular code in the protein coding genes. J Theor Biol 182:45–58CrossRefGoogle Scholar
  6. Barrett SP, Salzman J (2016) Circular RNAs: analysis, expression and potential functions. Development 143:1838–1847CrossRefGoogle Scholar
  7. Barthélémy RM, Seligmann H (2016) Cryptic tRNAs in chaetognath mitochondrial genomes. Comput Biol Chem 62:119–132CrossRefGoogle Scholar
  8. Bartonek L, Zagrovic B (2017) mRNA/protein sequence complementarity and its determinants: the impact of affinity scales. PLoS Comput Biol 13:e1005648CrossRefGoogle Scholar
  9. Bieri P, Greber BJ, Ban N (2018) High-resolution structures of mitochondrial ribosomes and their functional implications. Curr Op Struct Biol 49:44–53CrossRefGoogle Scholar
  10. Bloch DP, McArthur B, Widdowson R, Spector D, Guimarães RC, Smith J (1983) tRNA-rRNA sequence homologies: evidence for a common evolutionary origin? J Mol Evol 19:420–428CrossRefGoogle Scholar
  11. Bloch DP, McArthur B, Widdowson R, Spector D, Guimarães RC, Smith J (1984) tRNA-rRNA sequence homologies: a model for the origin of a common ancestral molecule, and prospects for its reconstruction. Orig Life 14:571–578CrossRefGoogle Scholar
  12. Bloch DP, McArthur B, Guimarães RC, Smith J, Staves MP (1989) tRNA-rRNA sequence matches from inter- and intraspecies comparisons suggest common origins for the two RNAs. Braz J Med Biol Res 22:931–944Google Scholar
  13. Branciamore S, Di Giulio M (2011) The presence in tRNA molecule sequences of the double hairpin, an evolutionary stage through which the origin of this molecule is thought to have passed. J Mol Evol 72:352–363CrossRefGoogle Scholar
  14. Caetano-Anollés D, Caetano-Anollés G (2016) Piecemeal buildup of the genetic code, ribosomes, genomes from primordial tRNA building blocks. Life (Basel) 6:e43Google Scholar
  15. Caetano-Anollés G, Sun F-J (2014) The natural history of transfer RNA and its interactions with the ribosome. Front Genet 5:127Google Scholar
  16. Carrodeguas JA, Kobayashi R, Lim SE, Copeland WC, Bogenhagen DF (1999) The accessory subunit of Xenopus laevis mitochondrial DNA polymerase gamma increases processivity of the catalytic subunit of human DNA polymerase gamma and is related to class II aminoacyl-tRNA synthetases. Mol Cell Biol 19:4039–4046CrossRefGoogle Scholar
  17. Chaley MB, Korotkov EV, Phoenix DA (1999) Relationships among isoacceptor tRNAs seem to support the co-evolution theory of the origin of the genetic code. J Mol Evol 48:168–177CrossRefGoogle Scholar
  18. Chan PP, Cozen AE, Lowe TM (2011) Discovery of permuted and recently split transfer RNAs in Archaea. Genome Biol 12:R38CrossRefGoogle Scholar
  19. Chrzanowska-Lightowlers ZF, Rorbach J, Minczuk M (2017) Human mitochondrial ribosomes can switch structural tRNAs-but when and why? RNA Biol 14:1668–1671CrossRefGoogle Scholar
  20. Cuesta JA, Manrubia S (2017) Enumerating secondary structures and structural moieties for circular RNAs. J Theor Biol 419:375–382CrossRefGoogle Scholar
  21. Danan M, Schwartz S, Edelheit S, Sorek R (2012) Transcriptome-wide discovery of circular RNAs in Archaea. Nucleic Acids Res 40:3131–3142CrossRefGoogle Scholar
  22. Demongeot J (1978) Sur la possibilité de considérer le code génétique comme un code à enchaînement. Revue de Biomaths 62:61–66Google Scholar
  23. Demongeot J, Besson J (1983) Genetic-code and cyclic codes. Comptes R Acad Sci III Life Sci 296:807–810Google Scholar
  24. Demongeot J, Moreira A (2007) A possible circular RNA at the origin of life. J Theor Biol 249:314–324CrossRefGoogle Scholar
  25. Demongeot J, Glade N, Moreira A, Vial L (2009) RNA relics and origin of life. Int J Mol Sci 10:3420–3441CrossRefGoogle Scholar
  26. Demongeot J, Norris V (2019) Emergence of a “cyclosome” in a primitive network capable of building “infinite” proteins. Life (Basel) 9:e51Google Scholar
  27. Demongeot J, Seligmann H (2019a) Theoretical minimal RNA rings recapitulate the order of the genetic code’s codon-amino acid assignments. J Theor Biol 471:108–116CrossRefGoogle Scholar
  28. Demongeot J, Seligmann H (2019b) More pieces of ancient than recent theoretical minimal proto-tRNA-like RNA rings in genes coding for tRNA synthetases. J Mol Evol 87:152–174CrossRefGoogle Scholar
  29. Demongeot J, Seligmann H (2019c) Spontaneous evolution of circular codes in theoretical minimal RNA rings. Gene 705:95–102CrossRefGoogle Scholar
  30. Demongeot J, Seligmann H (2019d) Bias for 3′-dominant codon directional asymmetry in theoretical minimal RNA rings. J Comput Biol. CrossRefGoogle Scholar
  31. Demongeot J, Seligmann H (2019e) Theoretical minimal RNA rings designed according to coding constraints mimick deamination gradients. Naturwissenschaften 106:44CrossRefGoogle Scholar
  32. Di Giulio M (1995) Was it an ancient gene codifying for a hairpin RNA that, by means of direct duplication, gave rise to the primitive tRNA molecule? J Theor Biol 177:95–101CrossRefGoogle Scholar
  33. Di Giulio M (1999) The non-monophyletic origin of the tRNA molecule. J Theor Biol 197:403–414CrossRefGoogle Scholar
  34. Di Giulio M (2006) The non-monophyletic origin of the tRNA molecule and the origin of genes only after the evolutionary stage of the last universal common ancestor (LUCA). J Theor Biol 240:343–352CrossRefGoogle Scholar
  35. Di Giulio M (2008a) The split genes of Nanorchaeum equitans are an ancestral character. Gene 421:20–26CrossRefGoogle Scholar
  36. Di Giulio M (2008b) Transfer RNA genes in pieces are an ancestral character. EMBO Rep 9:820CrossRefGoogle Scholar
  37. Di Giulio M (2009a) A comparison among the models proposed to explain the origin of the tRNA molecule: a synthesis. J Mol Evol 69:1–9CrossRefGoogle Scholar
  38. Di Giulio M (2009b) Formal proof that the split genes of tRNAs of Nanoarchaeum equitans are an ancestral character. J Mol Evol 69:505–511CrossRefGoogle Scholar
  39. Di Giulio M (2012a) The origin of the tRNA molecule: independent data favor a specific model of its evolution. Biochimie 94:1464–1466CrossRefGoogle Scholar
  40. Di Giulio M (2012b) The ‘recently’ split transfer RNA genes may be close to merging the two halves of the tRNA rather than having just separated them. J Theor Biol 310:1–2CrossRefGoogle Scholar
  41. Di Giulio M (2013) A polyphyletic model for the origin of tRNAs has more support than a monophyletic model. J Theor Biol 318:124–128CrossRefGoogle Scholar
  42. Diener TO (1989) Circular RNAs: relics of precellular evolution? Proc Natl Acad Sci USA 86:9370–9374CrossRefGoogle Scholar
  43. Dila G, Michel CJ, Poch O, Ripp R, Thompson JD (2018) Evolutionary conservation and functional implications of circular code motifs in eukaryotic genomes. Biosystems 175:57–74CrossRefGoogle Scholar
  44. Dong R, Ma XK, Li GW, Yang L (2018) CIRCpedia v2: an updated database for comprehensive circular RNA nnotation and expression comparison. Genomics Proteom Bioinf 16:226–233CrossRefGoogle Scholar
  45. Eigen M, Winkler-Oswatitsch R (1981a) Transfer-RNA: the early adaptor. Naturwissenschaften 68:217–228CrossRefGoogle Scholar
  46. Eigen M, Winkler-Oswatitsch R (1981b) Transfer-RNA, an early gene? Naturwissenschaften 68:282–292CrossRefGoogle Scholar
  47. El Houmami N, Seligmann H (2017) Evolution of nucleotide punctuation marks: from structural to linear signals. Front Genetics 8:36CrossRefGoogle Scholar
  48. Fan L, Sanschagrin PC, Kaguni LS, Kuhn LA (1999) The accessory subunit of mtDNA polymerase shares structural homology with aminoacyl–tRNA synthetases: implications for a dual role as a primer recognition factor and processivity clamp. Proc Natl Acad Sci U S A 96:9527–9532CrossRefGoogle Scholar
  49. Farias ST, Rêgo TG, José MV (2014) Origin and evolution of the peptidyl transferase center from proto-tRNAs. FEBS Open Bio 4:175–178CrossRefGoogle Scholar
  50. Farias ST, Rêgo TG, José MV (2019) Origin of the 16S ribosomal molecular from ancestral tRNAs. Science 1:8CrossRefGoogle Scholar
  51. Faure E, Barthélémy RM (2018) True tRNA punctuation: specific conserved positions of stop and start codons in mitochondrial tRNA genes link transcription and translation. Chapter 1 in: Mitochondrial DNA- new insights, Seligmann H and Warthi G (eds), InTech, RijekyGoogle Scholar
  52. Fontecilla-Camps JC (2014) The stereochemical basis of the genetic code and the (Mostly) autotrophic origin of life. Life 4:1013–1025CrossRefGoogle Scholar
  53. Fujishima K, Sugahara J, Tomita M, Kanai A (2008) Sequence evidence in the archaeal genomes that tRNAs emerged through the combination of ancestral genes as 5′ and 3′ tRNA halves. PLoS ONE 3:e1622CrossRefGoogle Scholar
  54. Giulio Di et al (2014) The split genes of Nanoarchaeum equitans have not originated in its lineage and have been merged in another Nanoarchaeota: a reply to Podar. J Theor Biol 349:167–169CrossRefGoogle Scholar
  55. Guimarães RC (2011) Metabolic basis for the self-referential genetic code. Orig Life Evol Biosph 41:357–371CrossRefGoogle Scholar
  56. Guimarães RC (2014) Essentials in the life process indicated by the self-referential genetic code. Orig Life Evol Biosph 44:269–277CrossRefGoogle Scholar
  57. Guimarães RC (2015) The self-referential genetic code is biologic and includes the error minimization property. Orig Life Evol Biosph 45:69–75CrossRefGoogle Scholar
  58. Guimarães RC (2017) Self-referential encoding on modules of anticodon pairs—roots of the biological flow system. Life 7:16CrossRefGoogle Scholar
  59. Guimarães RC, Moreira CH, de Farias ST (2008) A self-referential model for the formation of the genetic code. Theory Biosci 127:249–270CrossRefGoogle Scholar
  60. Han DX, Wang HY, Ji ZL (2010) Amino acid homochirality may be linked to the origin of phosphate-based life. J Mol Evol 70:577–582CrossRefGoogle Scholar
  61. Hartman H (1975a) Speculations on the evolution of the genetic code. Origins Life Biosph 6:423–427CrossRefGoogle Scholar
  62. Hartman H (1975b) Speculations on the origin and evolution of metabolism. J Mol Evol 40:541–544Google Scholar
  63. Hartman H (1978) Speculations on the evolution of the genetic code II. Origins Life Biosph 9:133–136CrossRefGoogle Scholar
  64. Hartman H (1995) Speculations on the origin of the genetic code. J Mol Evol 40:541–544CrossRefGoogle Scholar
  65. Hartman H, Smith TF (2014) The evolution of the ribosome and the genetic code. Life (Basel) 4:227–249Google Scholar
  66. Hecht A, Glasgow J, Jaschke PR, Bawazer LA, Munson MS, Cochran JR, Endy D, Salit S (2017) Measurements of translation initiation from all 64 codons in E. coli. Nucleic Acids Res 45:3615–3626CrossRefGoogle Scholar
  67. Higgs PG, Pudritz RE (2009) A thermodynamic basis for prebiotic amino acid synthesis and the nature of the first genetic code. Astrobiology 9:483–490CrossRefGoogle Scholar
  68. Hixson JE, Wong TW, Clayton DA (1986) Both the conserved stem-loop and divergent 5′-flanking sequences are required for initiation at the human mitochondrial origin of light-strand DNA replication. J Biol Chem 261:2384–2390Google Scholar
  69. Hofacker IL, Stadler PF (2006) Memory efficient foding algorithms for circular RNA secondary structures. Bioinformatics 22:1172–1176CrossRefGoogle Scholar
  70. Huang S, Yang B, Chen BJ, Bliim N, Ueberham U, Arendt T, Janitz M (2017) The emerging role of circular RNAs in transcriptome regulation. Genomics 109:401–407CrossRefGoogle Scholar
  71. Johnson DBF, Wang L (2010) Imprints of the genetic code in the ribosome. Proc Natl Acad Sci USA 107:8298–8303CrossRefGoogle Scholar
  72. Jühling F, Pütz J, Florentz C, Stadler PF (2012) Armless mitochondrial tRNAs in Enoplea (Nematoda). RNA Biol 9:1161–1166CrossRefGoogle Scholar
  73. Jühling T, Duchardt-Ferner E, Bonin S, Wöhnert J, Pütz J, Florentz C, Betat H, Sauter C, Mörl M (2018) Small but large enough: structural properties of armless mitochondrial tRNAs from the nematode Romanomermis culicivorax. Nucleic Acids Res 46:9170–9180CrossRefGoogle Scholar
  74. Kitadai N, Maruyama S (2018) Origins of building blocks of life: a review. Geosci Front 9:1117–1153CrossRefGoogle Scholar
  75. Koonin EV (2017) Frozen accident pushing 50: stereochemistry, expansion, and chance in the evolution of the genetic code. Life (Basel) 7:22Google Scholar
  76. Krishnan NM, Seligmann H, Raina SZ, Pollock DD (2004a) Detecting gradients of asymmetry in site-specific substitutions in mitochondrial genomes. DNA Cell Biol 23:707–714CrossRefGoogle Scholar
  77. Krishnan NM, Seligmann H, Raina SZ, Pollock DD (2004b) Phylogenetic analyses detect site-specific perturbations in asymmetric mutation gradients. Curr Comput Mol Biol 2004:266–267Google Scholar
  78. Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20:1829–2842CrossRefGoogle Scholar
  79. Lathe R (2004) Fast tidal cycling and the origin of life. Icarus 168:18–22CrossRefGoogle Scholar
  80. Li X, Yang L, Chen L-L (2018) The biogenesis, functions and challenges of circular RNAs. Mol Cell 71:428–442CrossRefGoogle Scholar
  81. Maizels N, Weiner AM (1994) Phylogeny from function: evidence from the molecular fossil record that tRNA originated in replication, not translation. Proc Natl Acad Sci USA 91:6729–6734CrossRefGoogle Scholar
  82. Michel CJ (2012) Circular code motifs in transfer RNAs. Comput Biol Chem 45:17–29CrossRefGoogle Scholar
  83. Michel CJ (2013) Circular code motifs in transfer and 16S ribosomal RNAs: a possible translation code in genes. Comput Biol Chem 37:24–37CrossRefGoogle Scholar
  84. Michel CJ, Seligmann H (2014) Bijective transformation circular codes and nucleotide exchanging RNA transcription. Biosystems 118:39–50CrossRefGoogle Scholar
  85. Möller W, Janssen GM (1990) Transfer RNAs for primordial amino acids contain remnants of a primitive code at position 3 to 5. Biochimie 72:361–368CrossRefGoogle Scholar
  86. Nicolet BP, Engels S, Aglialoro F, van den Akker E, von Lindern M, Wolkers MC (2018) Circular RNA expression in human hematopoietic cells is widespread and cell-type specific. Nucleic Acids Res 46:8168–8180CrossRefGoogle Scholar
  87. Ostrovskii VE, Kadyshevich EA (2011) Mitosis and DNA replication and life origination hydrate hypotheses: common physical and chemical grounds. In DNA replication-current advances, Seligmann H (ed), chapter 4, In Tech, Rijeky, p 76-114Google Scholar
  88. Ostrovskii VE, Kadyshevich EA (2012) Life origination hydrate hypothesis (LOH-hypothesis). Life 2:135–164CrossRefGoogle Scholar
  89. Pelc SR (1965) Correlation between coding-triplets and amino acids. Nature 207:597–599CrossRefGoogle Scholar
  90. Pelc SR, Welton MGE (1966) Stereochemical relationship between coding triplets and amino-acids. Nature 209:868–870CrossRefGoogle Scholar
  91. Randau L, Calvin K, Hall M, Yuan J, Podar M, Li H, Söll D (2005a) The heteromeric Nanoarchaeum equitans splicing endonuclease cleaves noncanonical bulge-helix-bulge motifs of joined tRNA halves. Proc Natl Acad Sci USA 102:17934–17939CrossRefGoogle Scholar
  92. Randau L, Münch R, Hohn MJ, Jahn D, Söll D (2005b) Nanoarchaeum equitans creates functional tRNAs from separate genes of their 5′- and 3′-halves. Nature 433:537–541CrossRefGoogle Scholar
  93. Randau L, Pearson M, Söll D (2005c) The complete set of tRNA species in Nanoarchaeun equitans. FEBS Lett 579:2945–2947CrossRefGoogle Scholar
  94. Root-Bernstein R (2007) Simultaneous origin of homochirality, the genetic code and its directionality. BioEssays 29:689–698CrossRefGoogle Scholar
  95. Root-Bernstein M, Root-Bernstein R (2015) The ribosome as a missing link in the evolution of life. J Theor Biol 367:130–158CrossRefGoogle Scholar
  96. Root-Bernstein R, Root-Bernstein ME (2016) The ribosome as a missing link in prebiotic evolution II: ribosomes encode ribosomal proteins that bind to common regions of their own mRNAs and rRNAs. J Theor Biol 397:115–127CrossRefGoogle Scholar
  97. Root-Bernstein R, Kim Y, Sanjay A, Burton ZF (2016) tRNA evolution from the proto-tRNA minihelix world. Transcription 19:153–163CrossRefGoogle Scholar
  98. Sablok G, Zhao H, Sun X (2016) Pant circular RNAs (circRNAs): transcriptional regulation beyond miRNAs in plants. Mol Plant 9:192–194CrossRefGoogle Scholar
  99. Seligmann H (2008) Hybridization between mitochondrial heavy strand tDNA and expressed light strand tRNA modulates the function of heavy strand tDNA as light strand replication origin. J Mol Biol 379:188–199CrossRefGoogle Scholar
  100. Seligmann H (2010) Mitochondrial tRNAs as light strand replication origins: similarity between anticodon loops and the loop of the light strand replication origin predicts initiation of DNA replication. Biosystems 99:85–93CrossRefGoogle Scholar
  101. Seligmann H (2011) Mutation patterns due to converging mitochondrial replication and transcription increase lifespan, and cause growth rate-longevity tradeoffs. DNA Replication-Current Advances, Seligmann H. (ed.), In Tech, book chapter 6: 151-80Google Scholar
  102. Seligmann H (2012a) Overlapping genes coded in the 3′-to-5′-direction in mitochondrial genes and 3′-to-5′ polymerization of non-complementary RNA by an ‘invertase’. J Theor Biol 315:38–52CrossRefGoogle Scholar
  103. Seligmann H (2012b) Replicational mutation gradients, dipole moments, nearest neighbour effects and DNA polymerase gamma fidelity in human mitochondrial genomes. In: Stuart D (ed) The mechanisms of DNA replication. Springer, New YorkGoogle Scholar
  104. Seligmann H (2012c) Coding constraints modulate chemically spontaneous mutational replication gradients in mitochondrial genomes. Curr Genomics 13:37–54CrossRefGoogle Scholar
  105. Seligmann H (2013a) Systematic asymmetric nucleotide exchanges produce human mitochondrial RNAs cryptically encoding for overlapping protein coding genes. J Theor Biol 324:1–20CrossRefGoogle Scholar
  106. Seligmann H (2013b) Polymerization of non-complementary RNA: systematic symmetric nucleotide exchanges mainly involving uracil produce mitochondrial RNA transcripts coding for cryptic overlapping genes. Biosystems 111:156–174CrossRefGoogle Scholar
  107. Seligmann H (2013c) Triplex DNA:RNA, 3′-to-5′ inverted RNA and protein coding in mitochondrial genomes. J Comput Biol 20:660–671CrossRefGoogle Scholar
  108. Seligmann H (2013d) Pocketknife tRNA hypothesis: anticodons in mammal mitochondrial tRNA side-arm loops translate proteins? Biosystems 113:165–176CrossRefGoogle Scholar
  109. Seligmann H (2014a) Mitochondrial swinger replication: DNA replication systematically exchanging nucleotides and short 16S ribosomal DNA swinger inserts. Biosystems 125:22–31CrossRefGoogle Scholar
  110. Seligmann H (2014b) Species radiation by DNA replication that systematically exchanges nucleotides? J Theor Biol 363:216–222CrossRefGoogle Scholar
  111. Seligmann H (2014c) Putative anticodons in mitochondrial tRNA sidearm loops: Pocketknife tRNAs? J Theor Biol 340:155–163CrossRefGoogle Scholar
  112. Seligmann H (2015a) Systematic exchanges between nucleotides: genomic swinger repeats and swinger transcription in human mitochondria. J Theor Biol 384:70–77CrossRefGoogle Scholar
  113. Seligmann H (2015b) Swinger RNAs with sharp switches between regular transcription and transcription systematically exchanging ribonucleotides: case studies. Biosystems 135:1–8CrossRefGoogle Scholar
  114. Seligmann H (2016a) Swinger RNA self-hybridization and mitochondrial non-canonical swinger transcription, transcription systematically exchanging nucleotides. J Theor Biol 399:84–91CrossRefGoogle Scholar
  115. Seligmann H (2016b) Sharp switches between regular and swinger mitochondrial replication: 16S rDNA systematically exchanging nucleotides A↔T+C↔G in the mitogenome of Kamimuria wangi. Mitochondrial DNA A DNA Mapping Seq Anal 27:2440–2446Google Scholar
  116. Seligmann H (2016c) Translation of mitochondrial swinger RNAs according to tri-, tetra- and pentacodons. Biosystems 140:38–48CrossRefGoogle Scholar
  117. Seligmann H (2018) Protein sequences recapitulate genetic code evolution. Comput Struct Biotechnol J 16:177–189CrossRefGoogle Scholar
  118. Seligmann H, Amzallag GN (2002) Chemical interactions between amino acid and RNA: multiplicity of the levels of specificity explains origin of the genetic code. Naturwissenschaften 89:542–551Google Scholar
  119. Seligmann H, Krishnan NM (2006) Mitochondrial replication origin stability and propensity of adjacent tRNA genes to form putative replication origins increase developmental stability in lizards. J Exp Zool B Mol Dev Evol 306:433–449CrossRefGoogle Scholar
  120. Seligmann H, Krishnan NM, Rao BJ (2006a) Possible multiple origins of replication in Primate mitochondria: alternative role of tRNA sequences. J Theor Biol 241:321–332CrossRefGoogle Scholar
  121. Seligmann H, Krishnan NM, Rao BJ (2006b) Mitochondrial tRNA sequences as unusual replication origins: pathogenic implications for Homo sapiens. J Theor Biol 243:375–385CrossRefGoogle Scholar
  122. Seligmann H, Labra A (2014) The relation between hairpin formation by mitochondrial WANCY tRNAs and the occurrence of the light strand replication origin in Lepidosauria. Gene 542:248–257CrossRefGoogle Scholar
  123. Seligmann H, Raoult D (2016) Unifying view of stem-loop hairpin RNA as origin of current and ancient parasitic and non-parasitic RNAs, including in giant viruses. Curr Opin Microbiol 31:1–8CrossRefGoogle Scholar
  124. Seligmann H, Warthi G (2017) Genetic code optimization for cotranslational protein folding: codon directional asymmetry correlates with antiparallel betasheets, tRNA synthetase classes. Comput Struct Biotechnol J 15:412–424CrossRefGoogle Scholar
  125. Seligmann H, Raoult D (2018) Stem-loop RNA hairpins in giant viruses: invading rRNA-like repeats and a template free RNA. Front Microbiol 9:101CrossRefGoogle Scholar
  126. Smith TF, Hartman H (2015) The evolution of class II aminoacyl-tRNA synthetases and the first code. FEBS Lett 589:3499–3507CrossRefGoogle Scholar
  127. Soma A, Onodera A, Sugahara J, Kanai A, Yachie N, Tomita M, Kawamura F, Sekine Y (2007) Permuted tRNA genes expressed via a circular RNA intermediate in Cyanidioschyzon merolae. Science 318:450–453CrossRefGoogle Scholar
  128. Sugahara J, Yachie N, Sekine Y, Soma A, Matsui M, Tomita M, Kanai A (2006) SPLITS: a new program for predicting split and intron-containing tRNA genes at the genome level. Silico Biol 6:411–418Google Scholar
  129. Suzuki H, Kaneko A, Yamamoto T, Nambo M, Hirasawa I, Umehara T, Yoshida H, Park SY, Tamura K (2017) Binding properties of split tRNA to the C-terminal domain of methionyl-tRNA synthetase of Nanoarchaeum equitans. J Mol Evol 84:267–278CrossRefGoogle Scholar
  130. Tamura K, Schimmel P (2003) Peptide synthesis with a template-like RNA guide and aminoacyl phosphate adaptors. Proc Natl Acad Sci USA 100:8666–8669CrossRefGoogle Scholar
  131. Trifonov EN (1999a) Elucidating sequence codes: three codes for evolution. Ann N Y Acad Sci 870:330–338CrossRefGoogle Scholar
  132. Trifonov EN (1999b) Glycine clock: eubacteria first archaea next, protoctista, fungi, planta and animalia at last. Gene Therapy Mol Biol 4:313–322Google Scholar
  133. Trifonov EN (2000) Consensus temporal order of amino acids and evolution of the triplet code. Gene 261:139–151CrossRefGoogle Scholar
  134. Trifonov EN (2004) The triplet code from first principles. J Biomol Struct Dyn 22:1–11CrossRefGoogle Scholar
  135. Trifonov EN, Bettecken T (1997) Sequence fossils, triplet expansion, and reconstruction of earliest codons. Gene 205:1–6CrossRefGoogle Scholar
  136. Warthi G, Seligmann H (2018) Swinger RNAs in the human mitochondrial transcriptome. In: Mitochondrial DNA, Seligmann H and Warthi G eds, InTechOpenGoogle Scholar
  137. Wende S, Platzer EG, Jühling F, Pütz J, Florentz C, Stadler PF, Mörl M (2014) Biological evidence for the world’s smallest tRNAs. Biochimie 100:151–158CrossRefGoogle Scholar
  138. Widmann J, Di Giulio M, Yarus M, Knight R (2005) tRNA creation by hairpin duplication. J Mol Evol 61:524–530CrossRefGoogle Scholar
  139. Wolf YI, Koonin EV (2001) Origin of an animal mitochondrial DNA polymerase subunit via lineage-specific acquisition of a glycyl–tRNA synthetase from bacteria of the Thermus-Deinococcus group. Trends Genet 17:431–433CrossRefGoogle Scholar
  140. Xia T, SantaLucia J Jr, Burkhard ME, Kierzek R, Schroeder SJ, Jiao X, Cox C, Turner DH (1998) Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry 37:14719–14735CrossRefGoogle Scholar
  141. Yarus M (2017) The genetic code and RNA-amino acid affinities. Life (Basel) 7:13Google Scholar
  142. Yarus M, Christian EL (1989) Genetic code origins. Nature 342:349–350CrossRefGoogle Scholar
  143. Yarus M, Widmann JJ, Knight R (2009) RNA-amino acid binding: a stereochemical era for the genetic code. J Mol Evol 69:406–429CrossRefGoogle Scholar
  144. Zagrovic B, Bartonek L, Polyansky AA (2018) RNA-protein interactions in an unstructured context. FEBS Lett 592:2901–2916CrossRefGoogle Scholar
  145. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Faculty of Medicine, Laboratory AGEIS EA 7407, Team Tools for e-Gnosis MedicalUniversité Grenoble AlpesLa TroncheFrance
  2. 2.The National Natural History CollectionsThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations