Advertisement

Mathematical Modeling of Substrates Fluxes and Tumor Growth in the Brain

  • Angélique Perrillat-Mercerot
  • Nicolas Bourmeyster
  • Carole Guillevin
  • Alain MiranvilleEmail author
  • Rémy Guillevin
Regular Article

Abstract

The aim of this article is to show how a tumor can modify energy substrates fluxes in the brain to support its own growth. To address this question we use a modeling approach to explain brain nutrient kinetics. In particular we set up a system of 17 equations for oxygen, lactate, glucose concentrations and cells number in the brain. We prove the existence and uniqueness of nonnegative solutions and give bounds on the solutions. We also provide numerical simulations.

Keywords

Brain lactate kinetics Fast–slow system Well-posedness Regularity Simulations Glioma ANLS Lactate Brain energy substrates 

Mathematics Subject Classification

34A34 35B09 35Q92 

Notes

References

  1. Adijanto J, Philip N (2012) The SLC16A family of monocarboxylate transporters (MCTs)—physiology and function in cellular metabolism, ph homeostasis, and fluid transport. Curr Top Membr 70:275–312CrossRefGoogle Scholar
  2. Aubert A, Costalat R (2005) Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism. J Cereb Blood Flow Metab 25:1476–1490CrossRefGoogle Scholar
  3. Aubert A, Costalat R, Valabrgue R (2001) Modelling of the coupling between brain electrical activity and metabolism. Acta Biotheor 49(4):301–326CrossRefGoogle Scholar
  4. Aubert A, Costalat R, Magistretti P, Pierre J, Pellerin L (2005) Brain lactate kinetics: modeling evidence for neuronal lactate uptake upon activation. Proc Ntl Acad Sci USA 102:16448–16453CrossRefGoogle Scholar
  5. Calvetti D, Rangel GC, Giorda LG, Somersalo E (2018) A computational model integrating brain electrophysiology and metabolism highlights the key role of extracellular potassium and oxygen. J Theor Biol 446:238–258CrossRefGoogle Scholar
  6. Colen CB, Shen Y, Ghoddoussi F, Yu P, Francis TB, Koch BJ, Monterey MD, Galloway MP, Sloan AE, Mathupala SP (2011) Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study. Neoplasia 13(7):620–632CrossRefGoogle Scholar
  7. Doherty JR, Cleveland JL (2013) Targeting lactate metabolism for cancer therapeutics. J Clin Investig 123(9):3685–3692CrossRefGoogle Scholar
  8. Frahm J, Krüger G, Merboldt K, Kleinschmidt A (1996) Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man. Magn Reson Med 35:143–148CrossRefGoogle Scholar
  9. Griguer CE, Oliva CR, Gillespie GY (2005) Glucose metabolism heterogeneity in human and mouse malignant glioma cell lines. J Neuro-Oncol 74:123–133CrossRefGoogle Scholar
  10. Gruetter R, Ugurbil K, Seaquist ER (1998) Steady-state cerebral glucose concentrations and transport in the human brain. J Neurochem 70:397–408CrossRefGoogle Scholar
  11. Guillevin R, Menuel C, Vallée J-N, Franoise J-P, Capelle L, Habas C, De Marco G, Chiras J, Costalat R (2011) Mathematical modeling of energy metabolism and hemodynamics of WHO grade II gliomas using in vivo MR data. C R Biol 334:31–38CrossRefGoogle Scholar
  12. Guillevin R, Menuel C, Abud L, Costalat R, Capelle L, HoangXuan K, Habas C, Chiras J, Valle J-N (2012) Proton MR spectroscopy in predicting the increase of perfusion MR imaging for WHO grade II gliomas. J Magn Reson Imaging 35(3):543–550CrossRefGoogle Scholar
  13. Guillevin R, Herpe G, Verdier M, Guillevin C (2014) Low-grade gliomas: the challenges of imaging. Diagn Interv Imaging 95(10):957–963CrossRefGoogle Scholar
  14. Guillevin C, Guillevin R, Miranville A, Perrillat-Mercerot A (2018) Analysis of a mathematical model for brain lactate kinetics. Math Biosci Eng 15(5):1225–1242CrossRefGoogle Scholar
  15. Hertz L (2008) Bioenergetics of cerebral ischemia: a cellular perspective. Neuropharmacology 55:289–309CrossRefGoogle Scholar
  16. Jolivet R, Coggan JS, Allaman I, Magistretti PJ (2015) Multi-timescale modeling of activitydependent metabolic coupling in the neuron-glia-vasculature ensemble. PLoS Comput Biol 11:e1004036CrossRefGoogle Scholar
  17. Mangiardi JR, Yodice P (1990) Metabolism of the malignant astrocytoma. Neurosurgery 26:1–19CrossRefGoogle Scholar
  18. Mendoza-Juez B, Martínez-González A, Calvo GF, Pérez-García VM (2012) A mathematical model for the glucose-lactate metabolism of in vitro cancer cells. Bull Math Biol 74:1125–1142CrossRefGoogle Scholar
  19. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Ntl Acad Sci 91:10625–10629CrossRefGoogle Scholar
  20. Romero-Garcia S, Moreno-Altamirano MMB, Prado-Garcia H, Snchez- Garca FJ (2016) Lactate contribution to the tumor microenvironment: mechanisms, effects on immune cells and therapeutic relevance. Front Immunol 7:52CrossRefGoogle Scholar
  21. Siesjo BK (1978) Brain energy metabolism. Pharmazie in unserer Zeit, WileyGoogle Scholar
  22. Sonveaux P, Vgran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelly MJ, Gallez B, Wahl ML, Feron O, Dewhirst MW (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Investig 118(12):3930–3942Google Scholar
  23. Tomida A, Yun J, Tsuruo T (1996) Glucoseregulated stresses induce resistance to camptothecin in human cancer cells. Int J Cancer 68(3):391–396CrossRefGoogle Scholar
  24. Vafaee MS, Gjedde A (2000) Model of blood-brain transfer of oxygen explains nonlinear flow-metabolism coupling during stimulation of visual cortex. J Cereb Blood Flow Metab 20:747–754CrossRefGoogle Scholar
  25. Valabrégue R, Aubert A, Burger J, Bittoun J, Costalat R (2003) Relation between cerebral blood flow and metabolism explained by a model of oxygen exchange. J Cereb Blood Flow Metab 23:536–545CrossRefGoogle Scholar
  26. Valvona CJ, Fillmore HL, Nunn PB, Pilkington GJ (2016) The regulation and function of lactate dehydrogenase a: therapeutic potential in brain tumor. Brain Pathol 26(1):3–17CrossRefGoogle Scholar
  27. Walenta S, Mueller-Klieser WF (2004) Lactate: mirror and motor of tumor malignancy. Semin Radiat Oncol 14(3):267–274CrossRefGoogle Scholar
  28. Yaromina A, Quennet V, Zips D, Meyer S, Shakirin G, Walenta S, Mueller-Klieser W, Baumann M (2009) Co-localisation of hypoxia and perfusion markers with parameters of glucose metabolism in human squamous cell carcinoma (hSCC) xenografts. Int J Radiat Biol 85(11):972–980CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratoire Signalisation et Transports Ioniques Membranaires, ERL CNRS 7003, Equipe 4CSUniversité de PoitiersPoitiersFrance
  2. 2.Laboratoire de Mathématiques et Applications, UMR CNRS 7348, SP2MI, Equipe DACTIM-MISUniversité de PoitiersChasseneuil Futuroscope CedexFrance
  3. 3.CHU de PoitiersPoitiersFrance

Personalised recommendations