Advertisement

Multidrug Therapy for HIV Infection: Dynamics of Immune System

  • Deepmala Kamboj
  • M. D. Sharma
Regular Article
  • 27 Downloads

Abstract

A mathematical model of the dynamics of the immune system is considered to illustrate the effect of its response to HIV infection, i.e. on viral growth and on T-cell dynamics. The specific immune response is measured by the levels of cytotoxic lymphocytes in a human body. The existence and stability analyses are performed for infected steady state and uninfected steady state. In order to keep infection under control, roles of drug therapies are analyzed in the presence of efficient immune response. Numerical simulations are computed and exhibited to illustrate the support of the immune system to drug therapies, so as to ensure the decay of infection and to maintain the level of healthy cells.

Keywords

HIV infection CD4+ T cells Immune response Steady state Stability Efficacy 

References

  1. Arnaout R, Nowak M, Wodarz D (2000) HIV-1 dynamics revisited: biphasic decay by cytotoxic lymphocyte killing? Proc R Soc Lond B 265:1347–1354CrossRefGoogle Scholar
  2. Bonhoeffer S, May RM, Shaw GM, Nowak MA (1997) Virus dynamics and drug therapy. Proc Natl Acad Sci USA 94:6971–6976CrossRefGoogle Scholar
  3. Callaway D, Perelson AS (2002) HIV-1 infection and low steady state viral loads. Bull Math Biol 64:29–64CrossRefGoogle Scholar
  4. Cuipe MS, Bivort BL, Bortz DM, Nelson PW (2006) Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models. Math Biosci 200:1–27CrossRefGoogle Scholar
  5. Culshaw RV, Raun S, Raymond JS (2004) Optimal HIV treatment by maximising immune response. J Math Biol 48:545–562CrossRefGoogle Scholar
  6. De Boer RJ, Perelson AS (1998) Target cell limited and immune control models of HIV infection: a comparison. J Theor Biol 190:201–214CrossRefGoogle Scholar
  7. De Leenheer P, Smith HL (2003) Virus dynamics: a global analysis. SIAM J Appl Math 63:1313–1327CrossRefGoogle Scholar
  8. Dixit NM, Perelson AS (2004) Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokinetics and intracellular delay. J Theor Biol 226:95–109CrossRefGoogle Scholar
  9. Dubey P, Dubey US, Dubey B (2018) Modeling the role of acquired immune response and antiretroviral therapy in the dynamics of HIV infection. Math Comput Simul 144:120–137CrossRefGoogle Scholar
  10. Essunger P, Perelson AS (1994) Modelling HIV infection of CD4+ T-cell subpopulations. J Theor Biol 170:367–391CrossRefGoogle Scholar
  11. Kamboj D, Sharma MD (2016) Effects of combined drug therapy on HIV-1 infection dynamics. Int J Biomath 09:1–23CrossRefGoogle Scholar
  12. Kirschner DE, Webb GF (1997) A mathematical model of combined drug therapy of HIV infection. J Theor Med 1:25–34CrossRefGoogle Scholar
  13. Mellors JW, Rinaldo CR Jr, Gupta P, White RM, Todd JA, Kingsley LA (1996) Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 272:1167–70CrossRefGoogle Scholar
  14. Mittler J, Sulzer B, Neumann A, Perelson AS (1998) Influence of delayed virus production on viral dynamics in HIV-1 infected patients. Math Biosci 152:143–163CrossRefGoogle Scholar
  15. Mohri H, Bohhoeffer S, Monard S, Perelson AS, Ho DD (1998) Rapid turnover of T-lymphocytes in SIV infected rhesus macaques. Science 279:1223–1227CrossRefGoogle Scholar
  16. Nelson PW, Murray JD, Perelson AS (2000) A model of HIV-1 pathogenesis that includes an intracellular delay. Math Biosci 163:201–215CrossRefGoogle Scholar
  17. Nelson P, Mittler J, Perelson AS (2001) Effect of drug efficacy and the eclipse phase of the viral life cycle on estimates of HIV-1 viral dynamic parameters. J Acquir Immune Defic Syndr 26:405–412CrossRefGoogle Scholar
  18. Nowak MA, Bangham C (1996) Population dynamics of immune response to persistent viruses. Science 272:74–79CrossRefGoogle Scholar
  19. Nowak MA, May RM (2000) Virus dynamics. Oxford University Press, OxfordGoogle Scholar
  20. Nowak MA, Bonhoeffer S, Shaw GM, May RM (1997) Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations. J Theor Biol 184:203–217CrossRefGoogle Scholar
  21. Perelson AS (1989) Modelling the interaction of the immune system with HIV. In: Castillo-Chavez C (ed) Mathematical and statistical approaches to AIDS epidemiology. Springer, Berlin, p 350CrossRefGoogle Scholar
  22. Perelson AS, Nelson PW (1999) Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev 41:3–44CrossRefGoogle Scholar
  23. Perelson AS, Kirschner DE, De Boer R (1993) Dynamics of HIV Infection of CD4+ T-cells. Math Biosci 114:81–125CrossRefGoogle Scholar
  24. Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD (1996) HIV-1 dynamics in vivo: virion clearance rate, infected cell life span, and viral generation time. Science 271:1582–1586CrossRefGoogle Scholar
  25. Rong L, Feng Z, Perelson AS (2007) Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy. SIAM J Appl Math 67:731–756CrossRefGoogle Scholar
  26. Srivastava PK, Chandra P (2008) Hopf bifurcation and periodic solutions in model for the dynamics of HIV and immune response. Differ Equ Dyn Syst 16:77–100CrossRefGoogle Scholar
  27. Srivastava PK, Banerjee M, Chandra P (2009) Modeling the drug therapy for HIV infection. J Biol Syst 17:213–223CrossRefGoogle Scholar
  28. Srivastava PK, Banerjee M, Chandra P (2012) Dynamical model of inhost HIV infection: with drug therapy and multi viral strains. J Biol Syst 20:303–325CrossRefGoogle Scholar
  29. Wang L, Ellermeyer S (2006) HIV infection and CD4+ T-cell dynamics, Discrete. Contin Dyn Syst B6:1417–1430Google Scholar
  30. Wang L, Li M (2006) Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T-cells. Math Biosci 200:44–57CrossRefGoogle Scholar
  31. Wang Y, Zhou Y, Wu J, Heffernan J (2009) Oscillatory viral dynamics in a delayed HIV pathogenesis model. Math Biosci 219:104–112CrossRefGoogle Scholar
  32. Wang Y, Zhou Y, Brauer F, Heffernan JM (2013) Viral dynamics model with CTL immune response incorporating antiretroviral therapy. J Math Biol 67:901–934CrossRefGoogle Scholar
  33. Willems JL (1970) Stability theory of dynamical systems. Wiley, New YorkGoogle Scholar
  34. Wodarz D, Hamer DH (2007) Infection dynamic in HIV-specific CD4+ T-cells. Math Biosci 209:14–29CrossRefGoogle Scholar
  35. Wodarz D, Nowak MA (1999) Specific therapy regimes could lead to a long-term immunological control of HIV. Proc Natl Acad Sci 96:14464–14469CrossRefGoogle Scholar
  36. Zhu H, Zou X (2009) Dynamics of a HIV-1 infection model with cell-mediated immune response and intracellular delay. Discrete Contin Dyn Syst Ser-B 12:511–524CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.MLN CollegeYamuna NagarIndia
  2. 2.Department of MathematicsKurukshetra UniversityKurukshetraIndia

Personalised recommendations