Advertisement

Acta Biotheoretica

, Volume 67, Issue 1, pp 19–46 | Cite as

From Biological Determination to Entangled Causation

  • Davide VecchiEmail author
  • Paul-Antoine Miquel
  • Isaac Hernández
Regular Article
  • 177 Downloads

Abstract

Biologists and philosophers often use the language of determination in order to describe the nature of developmental phenomena. Accounts in terms of determination have often been reductionist. One common idea is that DNA is supposed to play a special explanatory role in developmental explanations, namely, that DNA is a developmental determinant. In this article we try to make sense of determination claims in developmental biology. Adopting a manipulationist approach, we shall first argue that the notion of developmental determinant is causal. We suggest that two different theses concerning developmental determination can be articulated: determination of occurrence and structural determination. We shall argue that, while the first thesis is problematic, the second, opportunely qualified, is feasible. Finally, we shall argue that an analysis of biological causation in terms of determination cannot account for entangled dynamics. Characterising causal entanglement as a particular kind of interactive causation whereby difference-making causes ascribable to different levels of biological organisation influence a particular ontogenetic outcome, we shall, via two illustrative examples, diagnose some potential limits of a reductionist, molecular and intra-level understanding of biological causation.

Keywords

Developmental causation Developmental determinant Manipulationism Biological determination Causal entanglement Biological reductionism 

Notes

Acknowledgements

D.V. acknowledges the financial support of the Fundação para a Ciência e a Tecnologia (FCT Grant No. SFRH/BPD/99879/2014, BIODECON R&D Project. Grant PTDC/IVC-HFC/1817/2014) and of the Fondo Nacional de Desarrollo Científico y Tecnológico de Chile (Grant No. 1171017 FONDECYT REGULAR). We thank Lorenzo Baravalle, Maurizio Esposito, Gil Santos and the reviewers for feedback.

References

  1. Baravalle L, Vecchi D (2016) Beyond blindness: on the role of organism and environment in trial generation. Stud Hist Philos Sci Part C Stud Hist Philos Biolog Biomed Sci 60:25–34CrossRefGoogle Scholar
  2. Baumgartner M (2009) Interventionist causal exclusion and non-reductive physicalism. Int Stud Philos Sci 23(2):161–178CrossRefGoogle Scholar
  3. Bechtel W (2015) Can mechanistic explanation be reconciled with scale-free constitution and dynamics? Stud Hist Philos Biolog Biomed Sci 2015(53):84–93CrossRefGoogle Scholar
  4. Bürger R et al (2006) Why are phenotypic mutation rates much higher than genotypic mutation rates? Genetics 172:197–206CrossRefGoogle Scholar
  5. Clancy S (2008) RNA transcription by RNA polymerase: prokaryotes vs eukaryotes. Nat Educ 1(1):125Google Scholar
  6. Craver C, Bechtel B (2006) Mechanism. In: Sarkar S, Pfeifer J (eds) The philosophy of science: an encyclopedia. Routledge, New York, pp 469–478Google Scholar
  7. Craver CF, Bechtel W (2007) Top-down causation without top-down causes. Biol Philos 20:715–734Google Scholar
  8. Crews D (2003) Sex determination: where environment and genetics meet. Evolut Dev 5(1):50e55CrossRefGoogle Scholar
  9. Crick F (1958) On protein synthesis. Symp Soc Exp Biol 12:138–163Google Scholar
  10. Davis MC (2017) The essential activities of the bacterial sigma factor. Can J Microbiol 63:89–99CrossRefGoogle Scholar
  11. Delbrück M (1971) Aristotle-totle-totle. In: Monod J, Borek E (eds) Of microbes and life. Columbia University Press, New York, pp 50–55Google Scholar
  12. Dhouailly D (1983) Early events in retinoic acid-induced ptilopody in the chick embryo. Wilehm Roux Arch Dev Biol 192(1):21–27CrossRefGoogle Scholar
  13. Eronen MI (2013) No levels, no problems: downward causation in neuroscience. Philos Sci 80(5):1042–1052CrossRefGoogle Scholar
  14. Gilbert S (2000) Developmental biology. Sinauer Associates, SunderlandGoogle Scholar
  15. Gilbert S, Sarkar S (2000) Embracing complexity: organicism for the 21st century. Dev Dyn 219:1–9CrossRefGoogle Scholar
  16. Griffiths P, Stotz K (2013) Genetics and philosophy: an introduction. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. Griffiths P et al (2015) Measuring causal specificity. Philos Sci 82(4):529–555CrossRefGoogle Scholar
  18. Halder G, Callaerts P, Gehring WJ (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267(5205):1788–1792CrossRefGoogle Scholar
  19. Hartl FU et al (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332CrossRefGoogle Scholar
  20. Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Urbana, p 65Google Scholar
  21. Kirschner M, Gerhart JC (2005) The plausibility of life. Yale University Press, New HavenGoogle Scholar
  22. Laubichler M, Wagner GP (2001) How molecular is molecular developmental biology? A reply to Alex Rosenberg’s reductionism redux: computing the embryo. Biol Philos 16:53–68CrossRefGoogle Scholar
  23. Lesne A (2013) Multiscale analysis of biological systems. Acta Biotheor 61(1):3–19CrossRefGoogle Scholar
  24. Lesne A, Victor JM (2006) Chromatin fiber functional organisation: some plausible models. Eur Phys J E 19:279–290CrossRefGoogle Scholar
  25. Levin M (2012) Morphogenetic fields in embryogenesis, regeneration, and cancer: non-local control of complex patterning. BioSystems 109:243–261CrossRefGoogle Scholar
  26. Lewontin R, Levins R (2007) Biology under the influence: dialectical essays on the coevolution of nature and society. Monthly Review Press, New York CityGoogle Scholar
  27. Maffini MV, Calabro JM, Soto AM, Sonnenschein C (2005) Stromal regulation of neoplastic development: age-dependent normalization of neoplastic mammary cells by mammary stroma. Am J Pathol 67:1405–1410CrossRefGoogle Scholar
  28. Mahner M, Bunge M (1997) Foundations of biophilosophy. Springer, BerlinCrossRefGoogle Scholar
  29. Malaterre C (2011) Making sense of downward causation in manipulationism. Hist Philos Life Sci 33:537–562Google Scholar
  30. Malyshev DA et al (2014) A semi-synthetic organism with an expanded genetic alphabet. Nature 509:385–388CrossRefGoogle Scholar
  31. Noble D (2006) The music of life biology beyond the genome. Oxford University Press, OxfordGoogle Scholar
  32. Noble D (2008) Genes and causation. Philos Trans R Soc A 366:3001–3015CrossRefGoogle Scholar
  33. Noble D (2012) A theory of biological relativity: no privileged level of causation. Interface Focus 2(1):55–64CrossRefGoogle Scholar
  34. Noble D, Noble SJ (1984) A model of S.A. node electrical activity using a modification of the Di Francesco-Noble equations. Proc R Soc B 222:295–304Google Scholar
  35. Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conserv Biol 4(4):1990CrossRefGoogle Scholar
  36. Pierce BA (2012) Genetics: a conceptual approach. W.H. Freeman & Co., New YorkGoogle Scholar
  37. Raatikainen P (2010) Causation, exclusion, and the special sciences. Erkenntnis 3:349–363CrossRefGoogle Scholar
  38. Rosenberg A (1997) Reductionism redux: computing the embryo. Biol Philos 12:445–470CrossRefGoogle Scholar
  39. Sarkar S (2005) Molecular models of life. MIT Press, CambridgeGoogle Scholar
  40. Shapiro L, Sober E (2007) Epiphenomenalism. The do’s and don’ts. In: Wolters G, Machamer P (eds) Thinking about causes: from greek philosophy to modern physics. University of Pittsburgh Press, Pittsburgh, pp 235–264Google Scholar
  41. Umerez J, Mossio M (2013) Constraint. In: Dubitzky W, Wolkenhauer O, Yokota H, Cho K-H (eds) Encyclopedia of systems biology. Springer, New York, pp 490–493CrossRefGoogle Scholar
  42. Vecchi D, Hernandez I (2014) The epistemological resilience of the concept of morphogenetic field. In: Minelli A, Pradeu T (eds) Towards a theory of development. Oxford University Press, Oxford, pp 79–94CrossRefGoogle Scholar
  43. Waddington CH (1939) Genes as evocators in development. Growth 1:S37–S44Google Scholar
  44. Waters K (2007) Causes that make a difference. J Philos 104(11):551–579CrossRefGoogle Scholar
  45. Weber M (2006) The central dogma as a thesis of causal specificity. Hist Philos Life Sci 28:595–610Google Scholar
  46. West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, OxfordGoogle Scholar
  47. Wolpert L (1991) The triumph of the embryo. Oxford University Press, OxfordGoogle Scholar
  48. Woodward J (2003) Making things happen. Oxford University Press, OxfordGoogle Scholar
  49. Woodward J (2008) Mental causation and neural mechanisms. In: Hohwy J, Kallestrup J (eds) Being reduced: new essays on reductive explanation and special science causation. Oxford University Press, Oxford, pp 218–262CrossRefGoogle Scholar
  50. Woodward J (2010) Causation in biology: stability, specificity, and the choice of levels of explanation. Biol Philos 25:287–318CrossRefGoogle Scholar
  51. Ylikoski P (2014) Rethinking micro–macro relations. In: Zahle J, Collin F (eds) Rethinking the individualism-holism debate. Springer International Publishing, BaselGoogle Scholar
  52. Zuckerkandl E, Villet R (1988) Concentration-affinity equivalence in gene regulation: convergence of genetic and environmental effects. Proc Natl Acad Sci USA 85:4784–4788CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Davide Vecchi
    • 1
    • 2
    Email author
  • Paul-Antoine Miquel
    • 3
  • Isaac Hernández
    • 3
  1. 1.Centro de Filosofia das Ciências, Departamento de História e Filosofia das Ciências, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  2. 2.Departamento de Filosofía, Facultad de HumanidadesUniversidad de Santiago de ChileSantiagoChile
  3. 3.Laboratoire ERRAPHIS, PhSciViUniversité Toulouse Jean JaurèsToulouse Cedex 9France

Personalised recommendations