Acta Biotheoretica

, Volume 66, Issue 4, pp 379–397

# Study of the Population Dynamics of Busseola fusca, Maize Pest

• Janvier Pesser Ntahomvukiye
• Anatole Temgoua
• Samuel Bowong
Regular Article

## Abstract

Busseola fusca is a maize and sorghum pest that can cause significant damage to both crops. Given that maize is one of the main cereals grown in the worldwide, this pest is a major challenge for maize production and therefore for the economies of several countries . In this paper , based on the life cycle of B. fusca, we propose a mathematical model to study the population dynamics of this insect pest . A sensitivity analysis using the eFast method was performed to show the most important parameters of the model. We present the theoretical analysis of the model. More precisely, we derive a threshold parameter $${\mathcal {N}}_0$$, called basic offspring number and show that the trivial equilibrium is globally asymptotically stable whenever $${\mathcal {N}}_0\le 1$$, while if $${\mathcal {N}}_0>1$$, the non trivial equilibrium is globally asymptotically stable. The theoretical results are supported by numerical simulations.

## Keywords

Maize Pest insect Busseola fusca Mathematical models Basic offspring number Stability

## Notes

### Acknowledgements

The authors are grateful to the anonymous reviewers, and the Handling Editor, for their suggestions that have greatly improved the paper.

## References

1. Anguelov R, Popova E (2010) Topological structure preserving numerical simulations of dynamical models. J Comput Appl Math 235:358–365
2. Anguelov R, Dumont Y, Lubuma J (2012) Mathematical modeling of sterile insect technology for control of anopheles mosquito. Comput Math Appl 64(3):374–389
3. Anguelov R, Dufourd C, Dumont Y (2017) Mathematical model for pest-insect control using mating disruption and trapping. Appl Math Model 52(3):437–457
4. Calatayud PA, al. (2014) Ecology of the african maize stalk borer, Busseola fusca (lepidoptera: Noctuidae) with special reference to insect-plant interactions. Insects 5(3):539–563
5. Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio $$\cal{R}_0$$ in models for infectious diseases in heterogeneous populations. J Math Biol 28:365–382
6. Diekmann O, Heesterbeek JAP, Roberts MG (2009) The construction of next generation matrices for compartmental epidemic models. J R So Interface 7(47):873–885
7. Farina L, Rinaldi S (2000) Positive linear systems : theory and applications. Wiley, New York
8. Glatz J (2015). The effect of temperature on the development and reproduction of Busseola fusca (Lepidoptera: Noctuidae). Dissertation submitted in fulfilment of the requirements for the degree magister scientiae in environmental sciences at the potchefstroom campus of the North-west universityGoogle Scholar
9. Mailleret L (2004). Stabilisation Globale de Systèmes Dynamiques Positifs Mal Connus. Applications en Biologie. PhD thesis, Université Nice Sophia AntipolisGoogle Scholar
10. Mally CW (1920). The maize stalk borer, Busseola fusca (fuller). Bulletin of the Department of Agriculture, Union of South African 3, 111pGoogle Scholar
11. Muma M, Gumiere SJ, Rousseau AN (2014) Analyse de sensibilité globale du modèle cathy aux propriétès hydrodynamiques du sol d’un micro-bassin agricole drainé. Hydrol Sci J 59(8):1606–1623
12. Polaszek A, al (2000). Les foreurs des tiges de céréales en Afrique: Importance économique, Systèmatique, ennemis naturels et méthode de lutte. CIRAD (version française)Google Scholar
13. Saltelli A et al (1999) A quantitative model-independent method for global sensitivity analysis of model output, technometrics. J Stat Phys Chem Eng Sci 41(1):39–56Google Scholar
14. Sezonlin M. (2006). Phylogeopgraphies et génétique des populations du foreur de tuges de céréales Busseola Fusca (Fuller) (Lepideptera, Noctuidae) en Afrique sub-saharienne, implication pour la luttre biologique contre cet insecte. PhD thesis, Université de Paris XI-OrsayGoogle Scholar
15. Smith HL (1995) Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems. American Mathematical Society, Washington, DCGoogle Scholar
16. Unnithan GC, Paye SO (1990) Factors involved in mating, longevity, fecundity and egg fertility in the maize stem-borer, busseola fusca (fuller)(lep., noctuida). J Appl Entomol 109:295–301
17. Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

## Authors and Affiliations

• Janvier Pesser Ntahomvukiye
• 1
• 2
• 3
• 4
• Anatole Temgoua
• 2
• 4
• Samuel Bowong
• 2
• 3
• 4
Email author
1. 1.Department of Mathematics, Faculty of ScienceUniversity of BurundiBujumburaBurundi
2. 2.Laboratory of Mathematics, Department of Mathematics and Computer Science, Faculty of ScienceUniversity of DoualaDoualaCameroon
3. 3.UMI 209 IRD & UPMC UMMISCOBondyFrance
4. 4.Project team EPITAG-LIRIMA, The African Center of Excellence in Information and Communication Technologies (CETIC)University of Yaounde 1YaoundéCameroon