Advertisement

Permanence and Extinction of a Diffusive Predator–Prey Model with Robin Boundary Conditions

  • M. A. Aziz-Alaoui
  • M. Daher Okiye
  • A. Moussaoui
Regular Article
  • 26 Downloads

Abstract

The main concern of this paper is to study the dynamic of a predator–prey system with diffusion. It incorporates the Holling-type-II and a modified Leslie–Gower functional responses under Robin boundary conditions. More concretely, we study the dissipativeness of the system by using the comparison principle, and we derive a criteria for permanence and for predator extinction.

Keywords

Reaction–diffusion Robin boundary conditions Predator–prey Permanence Extinction 

Mathematics Subject Classification

35B40 37N25 

Notes

Acknowledgements

This work was partially supported by the ERDF (XTerm Project) and Normandie Region, France. And also by The LMAH-FR-CNRS-3335.

References

  1. Abid W, Yafia R, Aziz-Alaoui MA, Bouhafa H, Abichou A (2015) Instability and pattern formation in three-species food chain model via Holling type II functional response on a circular domain. Int J Bifurc Chaos 25(6):1550092CrossRefGoogle Scholar
  2. Abid W, Yafia R, Aziz-Alaoui MA, Bouhafa H, Abichou A (2015) Diffusion driven instability and Hopf bifurcation in spatial predator–prey model on a circular domain. Appl Math Comput 260:292–313Google Scholar
  3. Aziz-Alaoui MA (2002) Study of a Leslie–Gower-type tritrophic population model. Chaos Solitons Fractals 14(8):1275–1293CrossRefGoogle Scholar
  4. Aziz-Alaoui MA, Daher OM (2003) Boudedness and global stability for a predator–prey model with modified Leslie–Gower and Holling type II schemes. Appl Math Lett 16(7):1069–1075CrossRefGoogle Scholar
  5. Bassett A, Krause A, Van Gorder RA (2017) Continuous dispersal in a model of predator–prey-subsidy population dynamics. Ecol Model 354:115–122CrossRefGoogle Scholar
  6. Camara BI, Aziz-Alaoui MA (2008) Dynamics of a predator–prey model with diffusion. Dyn Contin Discrete Impuls Syst Ser A Math Anal 15:897–906Google Scholar
  7. Camara BI, Aziz-Alaoui MA (2008) Complexity in a prey predator model. ARIMA 9:109–122Google Scholar
  8. Cantrell RS, Cosner C (1991) Diffusive logistic equations with indefinite weights: population models in disrupted environments II. SIAM J Math Anal 22:1043–1064CrossRefGoogle Scholar
  9. Cantrell RS, Cosner C (1996) Practical persistence in ecological models via comparison methods. Proc R Soc Edinb Sect A 126:247–272CrossRefGoogle Scholar
  10. Cantrell RS, Cosner C (1998) Practical persistence in diffusive food chain models. Nat Res Model 11:21–34CrossRefGoogle Scholar
  11. Cantrell RS, Cosner C (1999) Diffusion models for population dynamics incorporating individual behavior at boundaries: applications to refuge design. Theor Popul Biol 55:189–207CrossRefGoogle Scholar
  12. Cantrell RS, Cosner C (2001) On the dynamics of predator–prey models with the Beddington–DeAngelis functional response. J Math Anal Appl 257:206–222CrossRefGoogle Scholar
  13. Cantrell RS, Cosner C (2003) Spatial ecology via reaction–diffusion equations. Wiley Ser Math Comput Biol. Wiley, ChichesterGoogle Scholar
  14. Chen S, Shi J (2012) Global stability in a diffusive Holling–Tanner predator–prey model. Appl Math Lett 25(3):614–618CrossRefGoogle Scholar
  15. Chen B, Wang M (2008) Qualitative analysis for a diffusive predator–prey model. Comput Math Appl 55:339–355CrossRefGoogle Scholar
  16. Daher MO (2004) Etude et analyse asymptotique de certains systèmes dynamiques non-linéaires : application à des problèmes proie-prédateurs (in french). PhD Thesis, University of Le Havre, FranceGoogle Scholar
  17. Daher Okiye M, Aziz-Alaoui MA (2003) On the dynamics of a predator-prey model with the Holling–Tanner functional response. In: Mathematical modelling and computing in biology and medicine, Milan Res Cent Ind Appl Math MIRIAM Proj, Esculapio, Bologna, 92D25, pp 270–278Google Scholar
  18. Dai G, Ma R, Wang H, Wang F, Xu K (2015) Partial differential equations with Robin boundary conditions in online social networks. Discrete Contin Dyn Syst B 20(6):1609–1624CrossRefGoogle Scholar
  19. Friedman A (1964) Partial differential equations of parabolic type. Prentice-Hall Inc, Englewood CliffsGoogle Scholar
  20. Hale JK (1988) Asymptotic behavior of dissipative systems. Math Surveys and Monographs, vol 25. Am Math Sot, Providence, RIGoogle Scholar
  21. Hale JK, Waltman P (1989) Persistence in infinite-dimensional systems. SIAM J Math Anal 20:388–395CrossRefGoogle Scholar
  22. Hess P (1991) Periodic-parabolic boundary value problems and positivity. Longman Scientific & Technical, Harlow, Essex.Google Scholar
  23. Hutson V, Schmitt K (1992) Permanence in dynamical systems. Math Biosci 111:1–17CrossRefGoogle Scholar
  24. Ko W, Ryu K (2006) Qualitative analysis of a predator–prey model with Holling type II functional response incorporating a prey refuge. J Differ Equ 231(2):534–550CrossRefGoogle Scholar
  25. Kurowski L, Krause A, Mizuguchi H, Grindrod P, Van Gorder RA (2017) Two-species migration and clustering in two-dimensional domains. Bull Math Biol 79(10):2302–2333CrossRefGoogle Scholar
  26. Letellier C, Aziz-Alaoui MA (2002) Analysis of the dynamics of a realistic ecological model. Chaos Solitons Fractals 13(1):95–107CrossRefGoogle Scholar
  27. Letellier C, Aguirre L, Maquet J, Aziz-Alaoui MA (2002) Should all the species of a food chain be counted to investigate the global dynamics. Chaos Solitons Fractals 13(5):1099–1113CrossRefGoogle Scholar
  28. Moussaoui A, Bouguima SM (2016) Seasonal influences on a preypredator model. J Appl Math Comput 50(1):39–57CrossRefGoogle Scholar
  29. Nindjin AF, Aziz-Alaoui MA (2008) Persistence and global stability in a delayed Leslie–Gower type three species food chain. J Math Anal Appl 340(1):340–357CrossRefGoogle Scholar
  30. Nindjin AF, Aziz-Alaoui MA, Cadivel M (2006) Analysis of a predator–prey model with modified Leslie–Gower and Holling-type II schemes with time delay. Nonlinear Anal Real World Appl 7:1104–1118CrossRefGoogle Scholar
  31. Pao CV (1982) On nonlinear reaction–diffusion systems. J Math Anal Appl 87(1):165–198CrossRefGoogle Scholar
  32. Saez E, Gonzalez-Olivares E (1999) Dynamics of a predator–prey model. SIAM J Appl Math 59(5):1867–1878CrossRefGoogle Scholar
  33. Singh A, Gakkhar S (2014) Stabilization of modified Leslie–Gower prey–predator model. Differ Equ Dyn Syst 22(3):239–249CrossRefGoogle Scholar
  34. Tanner JT (1975) The stability and the intrinsic growth rates of prey and predator populations. Ecology 56:855–867CrossRefGoogle Scholar
  35. Upadhyay RK, Kumari N, Vikas Rai V (2008) Wave of chaos and pattern formation in spatial predator–prey systems with Holling type IV predator response. Math Model Nat Phenom 3(4):71–95CrossRefGoogle Scholar
  36. Upadhyay RK, Kumari N, Vikas Rai V (2009) Wave phenomena and edge of chaos in a diffusive predator–prey system under Allee effect. Differ Equ Dyn Syst 17(3):301–317CrossRefGoogle Scholar
  37. Wang F, Wang H, Xu K (2012) Diffusive logistic model towards predicting information diffusion in online social networks. In: 32nd international conference on distributed computing systems workshops (ICDCSW), pp 133–139Google Scholar
  38. Yafia R, El Adnani F, Talibi H (2007) Stability of limit cycle in a predator-prey model with modified Leslie–Gower and Holling-type II schemes with time delay. Appl Math Sci 1(3):119–131Google Scholar
  39. Yafia R, El Adnani F, Talibi H (2008) Limit cycle and numerical similations for small and large delays in a predatorprey model with modified Leslie–Gower and Holling-type II scheme. Nonlinear Anal Real World Appl 9:2055–2067CrossRefGoogle Scholar
  40. Ye QX, Li ZY (1990) Introduction to reaction–diffusion equations. Science Press, BeijingGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • M. A. Aziz-Alaoui
    • 1
  • M. Daher Okiye
    • 2
  • A. Moussaoui
    • 3
  1. 1.Normandie Univ, UNIHAVRE, LMAH, FR-CNRS-3335, ISCNLe HavreFrance
  2. 2.Faculté des SciencesUniversité de DjiboutiDjibouti CityDjibouti
  3. 3.Department of Mathematics, Faculty of SciencesUniversity of TlemcenTlemcenAlgeria

Personalised recommendations