Acta Biotheoretica

, Volume 65, Issue 1, pp 37–61 | Cite as

On the Role of Imitation on Adolescence Methamphetamine Abuse Dynamics

  • J. Mushanyu
  • F. Nyabadza
  • G. Muchatibaya
  • A. G. R. Stewart
Regular Article

Abstract

Adolescence methamphetamine use is an issue of considerable concern due to its correlation with later delinquency, divorce, unemployment and health problems. Understanding how adolescents initiate methamphetamine abuse is important in developing effective prevention programs. We formulate a mathematical model for the spread of methamphetamine abuse using nonlinear ordinary differential equations. It is assumed that susceptibles are recruited into methamphetamine use through imitation. An epidemic threshold value, \({\mathcal {R}}_a\), termed the abuse reproduction number, is proposed and defined herein in the drug-using context. The model is shown to exhibit the phenomenon of backward bifurcation. This means that methamphetamine problems may persist in the population even if \({\mathcal {R}}_a\) is less than one. Sensitivity analysis of \({\mathcal {R}}_a\) was performed to determine the relative importance of different parameters in methamphetamine abuse initiation. The model is then fitted to data on methamphetamine users less than 20 years old reporting methamphetamine as their primary substance of abuse in the treatment centres of Cape Town and parameter values that give the best fit are chosen. Results show that the proportion of methamphetamine users less than 20 years old reporting methamphetamine as their primary substance of abuse will continue to decrease in Cape Town of South Africa. The results suggest that intervention programs targeted at reducing adolescence methamphetamine abuse, are positively impacting methamphetamine abuse.

Keywords

Methamphetamine Imitation Adolescence Reproduction number Least squares curve fitting 

References

  1. Alkhudhari Z, Al-Sheikh S, Al-Tuwairqi S (2014) Global dynamics of a mathematical model on smoking. Hindawi Publishing Corporation, ISRN Applied Mathematics. doi:10.1155/2014/847075
  2. Bauch CT (2005) Imitation dynamics predict vaccinating behaviour. Proc R B Soc 272:16691675. doi:10.1098/rspb.2005.3153 CrossRefGoogle Scholar
  3. Benedict B (2007) Modeling alcoholism as a contagious disease: how infected drinking buddies spread problem drinking. SIAM News 40(3):11–13Google Scholar
  4. Birkhoff G, Rota G (1982) Ordinary differential equations. needham Heights Ginn 39:251–257Google Scholar
  5. Bissell JJ, Caiado CCS, Goldstein M, Straughan B (2014) Compartmental modelling of social dynamics with generalised peer incidence. Math Models Methods Appl Sci 24:719–750CrossRefGoogle Scholar
  6. Brook JS, Morojele NK, Brook DW, Rosen Z (2005) Predictors of cigarette use among South African adolescents. Int J Behav Med 12(4):207–217CrossRefGoogle Scholar
  7. Brook JS, Morojele NK, Pahl T, Brook D (2006) Predictors of drug use among South African adolescents. J Adolesc Health 38(1):26–34CrossRefGoogle Scholar
  8. Buonomo B, Lacitignola D (2008) On the dynamics of an SEIR epidemic model with a convex incidence rate. Ricerche di Matematica 57:261281CrossRefGoogle Scholar
  9. Buonomo B, Lacitignola D (2014) Modeling peer influence effects on the spread of highrisk alcohol consumption behavior. Ricerche di Matematica 63:101–117CrossRefGoogle Scholar
  10. Buonomo B, Rionero S (2010) On the Lyapunov stability for SIRS epidemicmodels with general nonlinear incidence rate. Appl Math Comput 217:40104016Google Scholar
  11. Capistrna MA, Morelesa MA, Larab B (2009) Parameter estimation of some epidemic models. The case of recurrent epidemics caused by respiratory syncytial virus. Bull Math Biol. doi:10.1007/s11538-009-9429-3
  12. Capone F, De Cataldis V, De Luca R (2013) On the nonlinear stability of an epidemic SEIR reaction diffusion model. Ricerche di Matematica 62:161181CrossRefGoogle Scholar
  13. Castillo-Chavez C, Huang W (2002) Age-structure core group model and its impact on STD dynamics. In: Mathematical approaches for emerging and reemerging infectious diseases: models, methods and theory. Castillo-Chavez C, Blower SM, van den Driessche P, Kirschner D, Yakubu AA (eds) IMA 126. Springer, New York, pp 261–274Google Scholar
  14. Castillo-Chavez C, Song B (2004) Dynamical models of tuberclosis and their applications. Math Biosci Eng 1(2):361–404CrossRefGoogle Scholar
  15. Chitnis N, Hyman JM, Cushing JM (2008) Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull Math Biol 70:1272–1296CrossRefGoogle Scholar
  16. Diekmann O, Heesterbeek JAP (2000) Mathematical epidemiology of infectious diseases. Wiley, New YorkGoogle Scholar
  17. Feng Z, Castillo-Chavez C, Capurro AF (2000) A model for tuberculosis with exogenous reinfection. Theor Popul Biol 57:235–247CrossRefGoogle Scholar
  18. Feng Fu, Rosenbloom DI, Wang L, Nowak MA (2011) Imitation dynamics of vaccination behaviour on social networks. Proc R B Soc 278:4249. doi:10.1098/rspb.2010.1107 Google Scholar
  19. Glantz MD (1992) A developmental psychopathology model of drug abuse vulnerability.In: Glantz M, Pickens R (eds) Vulnerability to drug abuse. American Psychological Association, Washington, DCGoogle Scholar
  20. Hadeler KP, Castillo-Chavez C (1995) A core group model for disease transmission. J Math Biosci 128:4155CrossRefGoogle Scholar
  21. Hsier YH, Wang YS (2006) Basic reproduction number for HIV model incorporating commercial sex and behavior change. Bull Math Biol 68:551–575CrossRefGoogle Scholar
  22. Huang W, Cook KL, Castillo-Chavez C (1992) Stability and bifurcation for a multiple-group model for the dynamics of HIV/AIDS transmission. SIAM J Appl Math 52(3):835854CrossRefGoogle Scholar
  23. Jamison DT, Feachmen RG, Makgoba MW, Bos ER, Baingana FK, Hofman KJ, Rogo KO (2006) Disease and mortality in sub-Saharan Africa, 2nd edn. World Bank, Washington, DCGoogle Scholar
  24. Jin Y, Wang W, Xiao S (2007) A SIRS model with a nonlinear incidence. Chaos Solitons Fract 34:14821497CrossRefGoogle Scholar
  25. Kandel DB, Davies M, Karus D, Yamaguchi K (1986) The consequences in young adulthood of adolescent drug involvement. Arch Gen Psychiatry 43:746–754CrossRefGoogle Scholar
  26. Kodaira JY, de Souza Passos JR (2010) The basic reproduction number in SI staged progression model: a probabilistic approach. In: Dynamics days South America 2010 international conference on chaos and nonlinear dynamicsGoogle Scholar
  27. Kribs-Zaleta CM, Velasco-Hernandez JX (2001) A simple vaccination model with multiple endemic states. Math Biosci 164(2):183201Google Scholar
  28. Li MY, Muldowney JS (1996) A geometric approach to global stability problems. SIAM J Math Anal 27(4):1070–1083CrossRefGoogle Scholar
  29. Mastroberardino T (2014) Mathematical modeling of the HIV/AIDS epidemic in Cuba. AMS Eastern Sectional Meeting University of Maryland, Baltimore CountyGoogle Scholar
  30. Morojele N, Parry C, Brook J, Kekwaletswe C (2013) Alcohol and drug use. Alcohol and Drug Abuse Research Unit, Medical Research Council, South AfricaGoogle Scholar
  31. Mubayi A, Greenwood PE, Castillo-Chavez C, Gruenewald PJ, Gorman DM (2010) The impact of relative residence times on the distribution of heavy drinkers in highly distinct environments. Soc Econ Plan Sci 44:4556CrossRefGoogle Scholar
  32. Mulone G, Straughan B (2009) A note on heroin epidemics. Math Biosci 208:138–141CrossRefGoogle Scholar
  33. Mulone G, Straughan B (2012) Modelling binge drinking. Int J Biomath 5: Article ID 1250005Google Scholar
  34. Mushanyu J, Nyabadza F, Muchatibaya G, Stewart AGR (2015a) Modelling multiple relapses in drug epidemics. Ricerche di matematica. doi:10.1007/s11587-015-0241-0
  35. Mushanyu J, Nyabadza F, Stewart AGR (2015b) Modelling the trends of inpatient and outpatient rehabilitation for methamphetamine in the Western Cape province of South Africa. BMC Res Notes 8:797. doi:10.1186/s13104-015-1741-4 CrossRefGoogle Scholar
  36. Ndeffo Mbah ML, Liu J, Bauch CT, Tekel YI, Medlock J et al (2012) The impact of imitation on vaccination behavior in social contact networks. PLoS Comput Biol. doi:10.1371/journal.pcbi.1002469
  37. Njagarah JBH, Nyabadza F (2013) Modelling the impact of rehabilitation, amelioration and relapse on the prevalence of drug epidemics. J Biol Syst 21:Article ID 1350001Google Scholar
  38. Nyabadza F, Hove-Musekwa SD (2010) From heroin epidemics to methamphetamine epidemics: modelling substance abuse in a South African Province. Math Biosci 225:132–140CrossRefGoogle Scholar
  39. Nyabadza F, Njagarah JBH, Smith RJ (2012) Modelling the dynamics of crystal meth (Tik) abuse in the presence of drug-supply chains in South Africa. Bull Math Biol. doi:10.1007/s11538-012-9790-5
  40. Onya EH (2005) A qualitative study of home-brewed alcohol use among adolescents in Mankweng District, Limpopo Province, South Africa. In: Madu NS, Govender S (eds) Mental health and psychotherapy in Africa. UL Press of the University of Limpopo Turfloop Campus, Sovenga, pp 291–307Google Scholar
  41. Parry CDH, Morojele NK, Saban A, Flisher AJ (2004) Brief report: social and neighbourhood correlates of adolescent drunkenness: a pilot study in Cape Town, South Africa. J Adolesc 27(3):369–374CrossRefGoogle Scholar
  42. Pluddemann A, Myers BJ, Parry CDH (2008a) Surge in treatment admissions related to methamphetamine use in Cape Town, South Africa: implications for public health. Drug Alcohol Rev 27:185–189CrossRefGoogle Scholar
  43. Pluddemann A, Flisher AJ, Mathews C, Carney T, Lombard C (2008b) Adolescent methamphetamine use and sexual risk behaviour in secondary school students in Cape Town, South Africa. Drug Alcohol Rev 27:687–692. doi:10.1080/09595230802245253 CrossRefGoogle Scholar
  44. Pluddemann A, Flisher AJ, McKetin R, Parry C, Lombard C (2010) Methamphetamine use, aggressive behavior and other mental health issues among high-school students in Cape Town, South Africa. Drug Alcohol Depend 109:14–19. doi:10.1016/j.drugalcdep.2009.11.021 CrossRefGoogle Scholar
  45. Pluddemann A, Dada S, Parry CDH (2013a) Decline in adolescent treatment admissions for methamphetamine use in Cape Town. S Afr Med J 103(7):478–480. doi:10.7196/SAMJ.6529
  46. Pluddemann A, Dada S, Parry CDH, Kader R, Parker JS, Temmingh H, van Heerden S, de Clercq C, Lewis I (2013b) Monitoring the prevalence of methamphetamine-related presentations at psychiatric hospitals in Cape Town, South Africa. Afr J Psychiatry 16:45–49Google Scholar
  47. Reddy P, Resnicow K, Omardien R, Kambaran N (2007) Prevalence and correlates of substance use among high school students in South Africa and the United States. Am J Public Health 97(10):1859–1864CrossRefGoogle Scholar
  48. Reddy P, James S, Sewpaul R et al (2008) Umthente Uhlaba Usamila—the South African Youth Risk Behaviour Survey. Medical Research Council, Cape TownGoogle Scholar
  49. Robins LN, Przybeck TR (1985) Age of onset of drug use as a factor in drug and other disorders. In: Jones CL, Battjes RJ (eds) Efiology of drug abuse: implications for prevention. National Institute on Drug Abuse, Rockville, pp 178–192Google Scholar
  50. Sànchez F, Wang X, Castillo-Chavez C, Gorman DM, Gruenewald PJ (2007) Drinking as an epidemic: a simple mathematical model with recovery and relapse. In: Alan Marlatt G, Witkiewitz K (eds) Therapists guide to evidence-based relapse prevention. Academic Press, New York, p 353Google Scholar
  51. Sharma S, Samanta GP (2015) Analysis of a drinking epidemic model. Int J Dyn Control. doi:10.1007/s40435-015-0151-8
  52. Sharomi O, Gumel AB (2008) Curtailing smoking dynamics: a mathematical modeling approach. Appl Math Comput 195:475499Google Scholar
  53. The South African Community Epidemiology Network on Drug Use (SACENDU) (2015). http://www.mrc.ac.za/adarg/sacendu.htm
  54. van den Driessche P, Watmough J (2000) A simple SIS epidemic model with a backward bifurcation. J Math Biol 40:525540Google Scholar
  55. van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for the compartmental models of disease transmission. Math Biosci 180:29–48CrossRefGoogle Scholar
  56. van den Driessche P, Watmough J (2003) Epidemic solutions and endemic catastrophes. In: Dynamical systems and their applications in biology, Cape Breton Island, NS, 2001. Fields Inst Commun 36:247–257; American Mathematical Society ProvidenceGoogle Scholar
  57. van den Driessche P, Zou X (2007) Modeling relapse in infectious diseases. Math Biosci 207:89103Google Scholar
  58. Walters CE, Straughan B, Kendal JR (2013) Modelling alcohol problems: total recovery. Ricerche Mater 62:33–53CrossRefGoogle Scholar
  59. White E, Comiskey C (2007) Heroin epidemics, treatment and ODE modelling. Math Biosci 208:312–324CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • J. Mushanyu
    • 1
  • F. Nyabadza
    • 2
  • G. Muchatibaya
    • 1
  • A. G. R. Stewart
    • 1
  1. 1.Department of MathematicsUniversity of ZimbabweMount Pleasant, HarareZimbabwe
  2. 2.Department of Mathematical SciencesStellenbosch UniversityMatielandSouth Africa

Personalised recommendations