Acta Biotheoretica

, Volume 64, Issue 4, pp 375–402 | Cite as

Hopf Bifurcations in Directed Acyclic Networks of Linearly Coupled Hindmarsh–Rose Systems

Regular Article
  • 92 Downloads

Abstract

This paper addresses the existence of Hopf bifurcations in a directed acyclic network of neurons, each of them being modeled by a Hindmarsh–Rose (HR) neuronal model. The bifurcation parameter is the small parameter corresponding to the ratio of time scales between the fast and the slow dynamics. We first prove that, under certain hypotheses, the single uncoupled neuron can undergo a Hopf bifurcation. Hopf bifurcation occurrences in a directed acyclic network of HR neurons are then discussed. Numerical simulations are carried out to observe these bifurcations and to illustrate the theoretical results.

Keywords

Hindmarsh–Rose system Hopf bifurcation Coupled systems 

Notes

Acknowledgments

The project is co-financed by the European Union with the European regional development fund (ERDF).

References

  1. Arena P, Fortuna L, Frasca M, La Rosa M (2006) Locally active hindmarsh–rose neurons. Chaos Solitons Fractals 27(2):405–412CrossRefGoogle Scholar
  2. Buzzi C, Llibre J, Medrado J (2016) Hopf and zero-hopf bifurcations in the hindmarsh–rose system. Nonlinear Dyn 83(3):1549–1556CrossRefGoogle Scholar
  3. Corson N, Aziz-Alaoui M (2009) Asymptotic dynamics of hindmarsh–rose neuronal system. Dyn Contin Discrete Impuls Syst Ser B Appl Algorithms 16:535–549Google Scholar
  4. Crofts JJ, Higham DJ (2011) Googling the brain: discovering hierarchical and asymmetric network structures, with applications in neuroscience. Internet Math 7(4):233–254CrossRefGoogle Scholar
  5. de Lange E (2006) Neuron models of the generic bifurcation type: network analysis. Thesis, EPFLGoogle Scholar
  6. González-Miranda J (2007) Complex bifurcation structures in the hindmarsh–rose neuron model. Int J Bifurcat Chaos 17(09):3071–3083CrossRefGoogle Scholar
  7. Haken H (2008) Brain dynamics. An introduction to models and simulations. Springer, BerlinGoogle Scholar
  8. Harary F (2004) Graph theory. 1994. Addison-Wesley, BostonGoogle Scholar
  9. Hassard B, Wan Y (1978) Bifurcation formulae derived from center manifold theory. J Math Anal Appl 63(1):297–312CrossRefGoogle Scholar
  10. Hassard BD, Kazarinoff ND, Wan YH (1981) Theory and applications of Hopf bifurcation, volume 41 of London mathematical society lecture note series. Cambridge University Press, CambridgeGoogle Scholar
  11. Hindmarsh J, Rose R (1982) A model of the nerve impulse using two first-order differential equations. Nature 296(5853):162–164CrossRefGoogle Scholar
  12. Hindmarsh J, Rose R (1984) A model of neuronal bursting using three coupled first order differential equations. Proc R Soc Lond B Biol Sci 221(1222):87–102CrossRefGoogle Scholar
  13. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544CrossRefGoogle Scholar
  14. Innocenti G, Morelli A, Genesio R, Torcini A (2007) Dynamical phases of the hindmarsh–rose neuronal model: studies of the transition from bursting to spiking chaos. Chaos Interdiscip J Nonlinear Sci 17(4):043,128CrossRefGoogle Scholar
  15. Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15(5):1063–1070CrossRefGoogle Scholar
  16. Izhikevich EM (2007) Dynamical systems in neuroscience. MIT press, CambridgeGoogle Scholar
  17. Li-Xia D, Qi-Shao L (2005) Codimension-two bifurcation analysis in hindmarsh–rose model with two parameters. Chin Phys Lett 22(6):1325CrossRefGoogle Scholar
  18. Lü J, Zhou T, Chen G, Zhang S (2002) Local bifurcations of the chen system. Int J Bifurc Chaos 12(10):2257–2270CrossRefGoogle Scholar
  19. MacKay R, Sepulchre JA (1995) Multistability in networks of weakly coupled bistable units. Phys D Nonlinear Phenom 82(3):243–254CrossRefGoogle Scholar
  20. Meyer CD (2000) Matrix analysis and applied linear algebra. SiamGoogle Scholar
  21. Storace M, Linaro D, de Lange E (2008) The hindmarsh–rose neuron model: bifurcation analysis and piecewise-linear approximations. Chaos Interdiscip J Nonlinear Sci 18(3):033,128CrossRefGoogle Scholar
  22. Wang H, Wang Q, Lu Q, Zheng Y (2013) Equilibrium analysis and phase synchronization of two coupled hr neurons with gap junction. Cognit Neurodyn 7(2):121–131CrossRefGoogle Scholar
  23. Zhou X, Wu Y, Li Y, Wei Z (2008) Hopf bifurcation analysis of the liu system. Chaos Solitons Fractals 36(5):1385–1391CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Normandie Univ, UNIHAVRE, LMAH, FR-CNRS-3335, ISCNLe HavreFrance

Personalised recommendations