Advertisement

Acta Biotheoretica

, Volume 64, Issue 4, pp 403–426 | Cite as

The Poitiers School of Mathematical and Theoretical Biology: Besson–Gavaudan–Schützenberger’s Conjectures on Genetic Code and RNA Structures

  • J. Demongeot
  • H. Hazgui
Regular article

Abstract

The French school of theoretical biology has been mainly initiated in Poitiers during the sixties by scientists like J. Besson, G. Bouligand, P. Gavaudan, M. P. Schützenberger and R. Thom, launching many new research domains on the fractal dimension, the combinatorial properties of the genetic code and related amino-acids as well as on the genetic regulation of the biological processes. Presently, the biological science knows that RNA molecules are often involved in the regulation of complex genetic networks as effectors, e.g., activators (small RNAs as transcription factors), inhibitors (micro-RNAs) or hybrids (circular RNAs). Examples of such networks will be given showing that (1) there exist RNA “relics” that have played an important role during evolution and have survived in many genomes, whose probability distribution of their sub-sequences is quantified by the Shannon entropy, and (2) the robustness of the dynamics of the networks they regulate can be characterized by the Kolmogorov–Sinaï dynamic entropy and attractor entropy.

Keywords

Complex biological networks Small RNAs Micro-RNAs Circular RNAs Dynamic entropy Attractor entropy Robustness 

Notes

Acknowledgments

We thank the ANR Project REGENR for financially aiding our research.

Supplementary material

10441_2016_9287_MOESM1_ESM.pdf (12.8 mb)
Supplementary material 1 (PDF 13120 kb)
10441_2016_9287_MOESM2_ESM.pdf (462 kb)
Supplementary material 2 (PDF 461 kb)
10441_2016_9287_MOESM3_ESM.pdf (162 kb)
Supplementary material 3 (PDF 162 kb)

References

  1. Almeida L, Demongeot J (2012) Predictive power of “a minima” models in biology. Acta Biotheor 60:3–19CrossRefGoogle Scholar
  2. Besson J (1977) Topology of circular DNA. Annales de Génétique 20:145–152Google Scholar
  3. Besson J (1994) Passion des formes: dynamique qualitative sémiophysique et intelligibilité. A René Thom. Porte M (ed). ENS Editions, Fontenay-Saint Cloud, p 803Google Scholar
  4. Besson J (2001) La quête de M.P. Schützenberger en biologie et médecine, pp 1–6. http://igm.univ-mlv.fr/~berstel/Mps/Souvenirs/Contributions/JacquesBesson/MPSParBesson.pdf
  5. Besson J, Gavaudan P (1967a) On the logarithmic organization of the genetic code. C R Acad Sci D 264:1311–1314Google Scholar
  6. Besson J, Gavaudan P (1967b) Antinomias in the axiomatization of genetic coding by triplets. C R Acad Sci D 264:2405–2408Google Scholar
  7. Besson J, Gavaudan P, Schützenberger MP (1969) Sur l’existence d’une certaine corrélation entre le poids moléculaire des acides aminés et le nombre de triplets intervenant dans leurs codages. C R Acad Sci Paris 268:1342–1344Google Scholar
  8. Binder S, Schuster W, Grienenberger JM, Weil JH, Brennicke A (1990) Genes for Gly-, His-, Lys-, Phe-, Ser- and Tyr-tRNA are encoded in Oenothera mitochondrial DNA. Curr Genet 17:353–358CrossRefGoogle Scholar
  9. Brent MR, Guigó R (2004) Recent advances in gene structure prediction. Curr Opin Struct Biol 14:264–272CrossRefGoogle Scholar
  10. Brooks DJ, Fresco JR, Arthur M, Lesk AM, Singh M (2002) Evolution of amino acid frequencies in proteins over deep time: inferred order of introduction of amino acids into the genetic code. Mol Biol Evol 19:1645–1655CrossRefGoogle Scholar
  11. Choi H, Gabriel K, Schneider J, Otten S, McClain WH (2003) Recognition of acceptor-stem structure of tRNAAsp by Escherichia coli aspartyl-tRNA synthetase. RNA 9:386–393CrossRefGoogle Scholar
  12. Chomsky N, Schützenberger MP (1963) The algebraic theory of context-free languages. In: Braffort P, Hirschberg D (eds) Computer programming and formal systems. North Holland, Amsterdam, pp 118–161CrossRefGoogle Scholar
  13. Crick FHC, Barnett L, Brenner S, Watts-Tobin RJ (1961) General nature of the genetic code for proteins. Nature 192:1227–1232CrossRefGoogle Scholar
  14. Crick FHC, Brenner S, Klug A, Pieczenik G (1976) A speculation on the origin of protein synthesis. Orig Life 7:389–397CrossRefGoogle Scholar
  15. Cuénot L (1938) Présentation d’un arbre généalogique du Règne animal. Bull Soc Sci Nancy 3:110–115Google Scholar
  16. Cullmann G, Labouygues JM (1983) Noise immunity of the genetic code. Biosystems 16:9–29CrossRefGoogle Scholar
  17. Demetrius L (1983) Statistical mechanics and population biology. J Stat Phys 30:709–753CrossRefGoogle Scholar
  18. Demetrius L (1997) Directionality principles in thermodynamics and evolution. Proc Natl Acad Sci USA 94:3491–3498CrossRefGoogle Scholar
  19. Demetrius L, Ziehe M (2007) Darwinian fitness. Theor Popul Biol 72:323–345CrossRefGoogle Scholar
  20. Demetrius L, Gundlach M, Ochs G (2004) Complexity and demographic stability in population models. Theor Popul Biol 65:211–225CrossRefGoogle Scholar
  21. Demongeot J (1975) Au sujet de quelques modèles stochastiques appliqués à la biologie. Doctoral dissertation, Université J. Fourier, Grenoble. http://tel.archives-ouvertes.fr/tel-00286222
  22. Demongeot J (1978) Sur la possibilité de considérer le code génétique comme un code à enchaînement. Revue de Biomathématiques 62:61–66Google Scholar
  23. Demongeot J, Besson J (1983) Code génétique et codes à enchaînement I. C R Acad Sci Ser III 296:807–810Google Scholar
  24. Demongeot J, Besson J (1996) Genetic code and cyclic codes II. C R Acad Sci Ser III 319:520–528Google Scholar
  25. Demongeot J, Demetrius L (2015) Complexity and stability in biological systems. Int J Bifurc Chaos 25:1540013CrossRefGoogle Scholar
  26. Demongeot J, Moreira A (2007) A circular RNA at the origin of life. J Theor Biol 249:314–324CrossRefGoogle Scholar
  27. Demongeot J, Weil G (2008) Complexification de la mémoire génétique. In: Bourgine P, Chavalarias D, Cohen-Boulakia C (eds) Déterminismes et complexités: du physique à l’éthique. Editions de la Découverte, Paris, pp 81–112Google Scholar
  28. Demongeot J, Aracena J, Thuderoz F, Baum TP, Cohen O (2003) Genetic regulation networks: circuits, regulons and attractors. C R Biol 326:171–188CrossRefGoogle Scholar
  29. Demongeot J, Drouet E, Moreira A, Rechoum Y, Sené S (2009a) MicroRNAs: viral genome and robustness of the genes expression in host. Philos Trans R Soc A 367:4941–4965CrossRefGoogle Scholar
  30. Demongeot J, Glade N, Moreira A, Vial L (2009b) RNA relics and origin of life. Int J Mol Sci 10:3420–3441CrossRefGoogle Scholar
  31. Demongeot J, Cohen O, Henrion-Caude A (2013) MicroRNAs and robustness in biological regulatory networks. A generic approach with applications at different levels: physiologic, metabolic, and genetic. Springer Ser Biophys 16:63–114CrossRefGoogle Scholar
  32. Demongeot J, Ben Amor H, Hazgui H, Waku J (2014) Robustness in neural and genetic regulatory networks: mathematical approach and biological applications. Acta Biotheor 62:243–284CrossRefGoogle Scholar
  33. Demongeot J, Hazgui H, Henrion Caude A (2015) Genetic regulatory networks: focus on attractors of their dynamics. In: Tran QN, Arabnia HR (eds) Computational biology, bioinformatics & systems biology. Elsevier, New York, pp 135–165Google Scholar
  34. Di Giulio M (2009) A comparison among the models proposed to explain the origin of the tRNA molecule: a synthesis. J Mol Evol 69:1–9CrossRefGoogle Scholar
  35. Franch T, Petersen M, Gerhart E, Wagner H, Jacobsen JP, Gerdes K (1999) Antisense RNA regulation in prokaryotes: rapid RNA/RNA interaction facilitated by a general U-turn loop structure. J Mol Biol 294:1115–1125CrossRefGoogle Scholar
  36. Gamow G, Ycas M (1955) Statistical correlation of protein and ribonucleic acid composition. Proc Natl Acad Sci USA 41:1011–1019CrossRefGoogle Scholar
  37. Gamow G, Rich A, Ycas M (1956) The problem of information transfer from the nucleic acids to proteins. Adv Biol Med Phys 4:23–68CrossRefGoogle Scholar
  38. Gavaudan P (1971) Internal logic of genetic coding. C R Acad Sci D 272:1672–1675Google Scholar
  39. Gavaudan P (1984) Atomes et molécules biogéniques dans l’univers des nombres. Edition Pierre Gavaudan, SorguesGoogle Scholar
  40. Gavaudan P, Besson J (1967) Remarks on the methods of translation of the genetic code in polypeptide chains. C R Acad Sci D 264:1919–1922Google Scholar
  41. Gavaudan P, Besson J (1969a) Statistical and segmental analysis of the composition of polypeptide chains. C R Acad Sci D 268:173–175Google Scholar
  42. Gavaudan P, Besson J (1969b) On the causes of the mode of distribution of redundancies in the genetic code. C R Acad Sci D 268:2130–2132Google Scholar
  43. Gavaudan P, Gavaudan N (1938) Mécanisme d’action de la colchicine sur la caryocinèse des végétaux. C R Soc Biol 128:714Google Scholar
  44. Gavaudan P, Schützenberger MP, Poussel H (1947) L’excitation des chimiorécepteurs de la langue par des substances du groupe des narcotiques indifférentes et la règle thermodynamique de la narcose. C R Acad Sci 224:1525–1527Google Scholar
  45. Gavaudan P, Poussel H, Schützenberger MP (1948) Le mécanisme physico-chimique de l’excitation sapide et la notion d’excitant indifférent. C R Acad Sci Paris 226:751–752Google Scholar
  46. Griffiths-Jones S, Marshall M, Khanna A, Eddy SR, Bateman A (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucl Acids Res 33:121–124CrossRefGoogle Scholar
  47. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388CrossRefGoogle Scholar
  48. Hobish MK, Wickramasinghe NSMD, Ponnamperuma C (1995) Direct interaction between amino-acids and nucleotides as a possible physico-chemical basis for the origin of the genetic code. Adv Space Res 15:365–375CrossRefGoogle Scholar
  49. Holley RW, Everett GA, Madison JT, Zamir A (1965a) Nucleotide sequences in the yeast alanine transfer ribonucleic acid. J Biol Chem 240:2122–2128Google Scholar
  50. Holley RW, Apgar J, Everett GA, Madison JT, Marquisee M, Merrill SH, Penswick JR, Zamir A (1965b) Structure of a ribonucleic acid. Science 147:1462–1465CrossRefGoogle Scholar
  51. Huck J (2011) Emergence in complex systems based on synthetic replicators. Doctoral dissertation, University of St AndrewsGoogle Scholar
  52. Katchalsky A (1973) Prebiotic synthesis of biopolymers on inorganic templates. Naturwissenschaften 60:215–220CrossRefGoogle Scholar
  53. Klingler T, Brutlag DL (1993) Detection of correlations in tRNA with structural implications. Intell Syst Mol Biol 1:225–233Google Scholar
  54. Lejeune J, Gautier M, Turpin R (1959) Etude des chromosomes somatiques de neuf enfants mongoliens. C R Acad Sci 248:1721–1722Google Scholar
  55. Lewin B (1960) Alternatives for splicing: recognizing the ends of lntrons. Cell 22:324–326CrossRefGoogle Scholar
  56. Lewin B (2008) Genes IX. Jones & Bartlett, BostonGoogle Scholar
  57. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338CrossRefGoogle Scholar
  58. Meyer SC, Nelson PA (2011) Can the origin of the genetic code be explained by direct RNA templating? Bio-complexity 2011:1–10CrossRefGoogle Scholar
  59. Michaud M, Cognat V, Duchêne AM, Maréchal-Drouard L (2011) A global picture of tRNA genes in plant genomes. Plant J 66:80–93CrossRefGoogle Scholar
  60. Miller SL (1953) A production of amino acids under possible primitive Earth conditions. Science 117:528–529CrossRefGoogle Scholar
  61. Nirenberg MW, Matthaei HJ (1961) The dependence of cell- free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci USA 47:1588–1602CrossRefGoogle Scholar
  62. Nishimura S, Jones DS, Khorana HG (1965) The in vitro synthesis of a co-polypeptide containing two amino acids in alternating sequence dependent upon a DNA-like polymer containing two nucleotides in alternating sequence. J Mol Biol 13:302–324CrossRefGoogle Scholar
  63. Orgel LE, Crick FHC (1993) Anticipating an RNA world. Some past speculations on the origin of life: where are they today? FASEB J 7:238–239Google Scholar
  64. Piccinelli P, Samuelsson T (2007) Evolution of the iron-responsive element. RNA 13:952–966CrossRefGoogle Scholar
  65. Prado-Prado F, García-Mera X, Abeijón P, Alonso N, Caamaño O, Yáñez M, Gárate T, Mezo M, González-Warleta M, Muiño L, Ubeira FM, González-Díaz H (2011) Using entropy of drug and protein graphs to predict FDA drug-target network: theoretic-experimental study of MAO inhibitors and hemoglobin peptides from Fasciola hepatica. Eur J Med Chem 44:1074–1094CrossRefGoogle Scholar
  66. Riera-Fernández P, Munteanu CR, Escobar M, Prado-Prado F, Martín-Romalde R, Pereira D, Villalba K, Duardo-Sánchez A, González-Díaz H (2012) New Markov–Shannon entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, parasite-host, neural, industry & legal-social networks. J Theor Biol 293:174–188CrossRefGoogle Scholar
  67. Rychlik W, Spencer WJ, Rhoads RE (1990) Optimization of the annealing temperature for DNA amplification in vitro. Nucl Acids Res 18:6409–6412CrossRefGoogle Scholar
  68. Sadownik J (2009) Evolving complex systems from simple molecules. Doctoral dissertation, University of St AndrewsGoogle Scholar
  69. Sangokoya C, Doss JF, Chi JT (2013) Iron-responsive miR-485-3p regulates cellular iron homeostasis by targeting ferroportin. PLoS Genet 9:e1003408CrossRefGoogle Scholar
  70. Schützenberger MP, Turpin R (1949) L’étude des dermatoglyphes. Semaine des Hôpitaux de Paris 25:2553–2562Google Scholar
  71. Seligmann H, Raoult D (2016) Unifying view of stem–loop hairpin RNA as origin of current and ancient parasitic and non-parasitic RNAs, including in giant viruses. Curr Opin Microbiol 31:1–8CrossRefGoogle Scholar
  72. Shigi N, Suzuki T, Tamakoshi M, Oshima T, Watanabe K (2002) Conserved bases in the TψC-loop of tRNA are determinants for thermophile-specific 2-thiouridylation at position 54*. J Biol Chem 277:39128–39135CrossRefGoogle Scholar
  73. Sonneborn TM (1965) Degeneracy of the genetic code: extent, nature and genetic implications. In: Bryson V, Vogel H (eds) Evolving genes and proteins. Academic Press, New York, pp 377–397CrossRefGoogle Scholar
  74. Sprinzl M, Horn C, Brown M, Ioudovitch A, Steinberg S (1998) Compilation of tRNA sequences and sequences of tRNA genes. Nucl Acids Res 26:148–153CrossRefGoogle Scholar
  75. Subirana JA, Messeguer X (2010) The most frequent short sequences in non-coding DNA. Nucl Acids Res 38:1172–1181CrossRefGoogle Scholar
  76. Tanaka T, Kikuchi Y (2001) Origin of the cloverleaf shape of transfer RNA—the double-hairpin model: Implication for the role of tRNA intro and the long extra loop. Viva Origino 29:119–142Google Scholar
  77. Thom R (1988) Esquisse d’une sémiophysique. Théorie des catastrophes et physique aristotélicienne. Interéditions, ParisGoogle Scholar
  78. Turpin R, Lejeune J (1954) Analogie entre le type dermatoglyphe des singes inférieurs et celui des enfants atteints de mongolisme. C R Acad Sci 238:395–397Google Scholar
  79. Waddington CH (1940) Organisers and genes. Cambridge University Press, CambridgeGoogle Scholar
  80. Waddington CH (1952) The epigenetics of birds. Cambridge University Press, CambridgeGoogle Scholar
  81. Watson JD, Crick FHC (1953) Genetical implications of the structure of deoxyribonucleic acid. Nature 171:964–967CrossRefGoogle Scholar
  82. Yarus M, Widmann JJ, Knight R (2009) RNA-amino acid binding: a stereochemical era for the genetic code. J Mol Evol 69:406–429CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.AGIM, CNRS FRE 3405, Faculty of Medicine of GrenobleUniversity J. FourierLa TroncheFrance

Personalised recommendations