Acta Biotheoretica

, Volume 63, Issue 3, pp 309–323 | Cite as

Computing with Synthetic Protocells

  • Alexis Courbet
  • Franck Molina
  • Patrick AmarEmail author
Regular Article


In this article we present a new kind of computing device that uses biochemical reactions networks as building blocks to implement logic gates. The architecture of a computing machine relies on these generic and composable building blocks, computation units, that can be used in multiple instances to perform complex boolean functions. Standard logical operations are implemented by biochemical networks, encapsulated and insulated within synthetic vesicles called protocells. These protocells are capable of exchanging energy and information with each other through transmembrane electron transfer. In the paradigm of computation we propose, protoputing, a machine can solve only one problem and therefore has to be built specifically. Thus, the programming phase in the standard computing paradigm is represented in our approach by the set of assembly instructions (specific attachments) that directs the wiring of the protocells that constitute the machine itself. To demonstrate the computing power of protocellular machines, we apply it to solve a NP-complete problem, known to be very demanding in computing power, the 3-SAT problem. We show how to program the assembly of a machine that can verify the satisfiability of a given boolean formula. Then we show how to use the massive parallelism of these machines to verify in less than 20 min all the valuations of the input variables and output a fluorescent signal when the formula is satisfiable or no signal at all otherwise.


Synthetic biology Biocomputing 3-SAT Protocell Protoputing 


  1. Amar P, Legent G, Thellier M, Ripoll C, Bernot G, Nystrom T, Saier M Jr, Norris V (2008) A stochastic automaton shows how enzyme assemblies may contribute to metabolic efficiency. BMC Syst Biol 2:27CrossRefGoogle Scholar
  2. Benenson Y (2012) Biomolecular computing systems: principles, progress and potential. Nat Rev Genet 13(7):455–468CrossRefGoogle Scholar
  3. Binz HK, Amstutz P, Plückthun A (2005) Engineering novel binding proteins from nonimmunoglobulin domains. Nat Biotechnol 23(10):1257–1268CrossRefGoogle Scholar
  4. Bouffard M, Molina F, Amar P (2015) Extracting logic gates from a metabolic network. In: P. Amar, F. Képès, V. Norris (eds.) Proceedings of the conference “advances in systems and synthetic biology”. EDP Sciences, Strasbourg, France, pp 63–76Google Scholar
  5. Candeias LP, MacFarlane DPS, McWhinnie SLW, Maidwell NL, Roeschlaub CA, Sammes PG, Rachel W (1998) The catalysed nadh reduction of resazurin to resorufin. J Chem Soc Perkin Trans 2:2333–2334CrossRefGoogle Scholar
  6. Canton B, Labno A, Endy D (2008) Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol 26(7):787–793CrossRefGoogle Scholar
  7. Chaize B, Colletier J-P, Winterhalter M, Fournier D (2004) Encapsulation of enzymes in liposomes: high encapsulation efficiency and control of substrate permeability. Artif Cells Blood Substit Immobil Biotechnol 32(1):67–75CrossRefGoogle Scholar
  8. Chandran D, Bergmann FT, Sauro HM, Densmore D (2011) Computer-aided design for synthetic biology. In: Koeppl H, Setti G, di Bernardo M, Densmore D (eds) Design and analysis of biomolecular circuits. Springer, New York, pp 203–224CrossRefGoogle Scholar
  9. Cook SA (1971) The complexity of theorem-proving procedures. In: Proceedings of the third annual ACM symposium on theory of computing, STOC’71, New York, NY, USA, ACM, pp 151–158Google Scholar
  10. Duncanson WJ, Lin T, Abate AR, Seiffert S, Shah RK, Weitz DA (2012) Microfluidic synthesis of advanced microparticles for encapsulation and controlled release. Lab Chip 12(12):2135CrossRefGoogle Scholar
  11. Elani Y, Law RV, Ces O (2014) Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways. Nat Commun 5:5305CrossRefGoogle Scholar
  12. Endy D (2005) Foundations for engineering biology. Nature 438(7067):449–453CrossRefGoogle Scholar
  13. Falciani C, Lozzi L, Pini A, Bracci L (2005) Bioactive peptides from libraries. Chem Biol 12(4):417–426CrossRefGoogle Scholar
  14. Hanes J, Schaffitzel C, Knappik A, Plückthun A (2000) Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat Biotechnol 18(12):1287–1292CrossRefGoogle Scholar
  15. Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287(5454):820–825CrossRefGoogle Scholar
  16. Huang X, Patil AJ, Li M, Mann S (2014) Design and construction of higher-order structure and function in proteinosome-based protocells. J Am Chem Soc 136(25):9225–9234CrossRefGoogle Scholar
  17. Kamat NP, Katz JS, Hammer DA (2011) Engineering polymersome protocells. J Phys Chem Lett 2(13):1612–1623CrossRefGoogle Scholar
  18. Karp RM (1972) Reducibility among combinatorial problems. In: Miller RE, Thatcher JW (eds) Complexity of computer computations. Plenum Press, New York, pp 85–103CrossRefGoogle Scholar
  19. Katzen F, Deshmukh M, Daldal F, Beckwith J (2002) Evolutionary domain fusion expanded the substrate specificity of the transmembrane electron transporter DsbD. EMBO J 21(15):3960–3969CrossRefGoogle Scholar
  20. Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11(5):367–379CrossRefGoogle Scholar
  21. Koeppl H (2011) Design and analysis of bio-molecular circuits. Springer, BerlinCrossRefGoogle Scholar
  22. Luisi PL, Stano P (2011) The minimal cell the biophysics of cell compartment and the origin of cell functionality. Springer, BerlinGoogle Scholar
  23. Marchisio MA, Stelling J (2009) Computational design tools for synthetic biology. Curr Opin Biotechnol 20(4):479–485CrossRefGoogle Scholar
  24. Matosevic S, Paegel BM (2011) Stepwise synthesis of giant unilamellar vesicles on a microfluidic assembly line. J Am Chem Soc 133(9):2798–2800CrossRefGoogle Scholar
  25. Noireaux V, Libchaber A (2004) A vesicle bioreactor as a step toward an artificial cell assembly. Proc Nat Acad Sci USA 101(51):17669–17674CrossRefGoogle Scholar
  26. Osyczka A, Moser CC, Daldal F, Leslie Dutton P (2004) Reversible redox energy coupling in electron transfer chains. Nature 427(6975):607–612CrossRefGoogle Scholar
  27. Page CC, Moser CC, Chen X, Dutton PL (1999) Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402(6757):47–52CrossRefGoogle Scholar
  28. Peters RJRW, Marguet M, Marais S, Fraaije MW, van Hest JCM, Lecommandoux S (2014) Cascade reactions in multicompartmentalized polymersomes. Angew Chem Int Ed 53(1):146–150CrossRefGoogle Scholar
  29. Purnick PEM, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10(6):410–422CrossRefGoogle Scholar
  30. Rakhit R, Navarro R, Wandless TJ (2014) Chemical biology strategies for posttranslational control of protein function. Chem Biol 21(9):1238–1252CrossRefGoogle Scholar
  31. Rasmussen S, Bedau MA, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF (2009) Protocells: bridging nonliving and living matter. MIT Press, BostonGoogle Scholar
  32. Rialle S, Felicori L, Dias-Lopes C, Peres S, Atia SE, Thierry AR, Amar P, Molina F (2010) BioNetCAD: design, simulation and experimental validation of synthetic biochemical networks. Bioinformatics 26(18):2298–2304CrossRefGoogle Scholar
  33. Richmond DL, Schmid EM, Martens S, Stachowiak JC, Liska N, Fletcher DA (2011) Forming giant vesicles with controlled membrane composition, asymmetry, and contents. Proc Nat Acad Sci 108(23):9431–9436CrossRefGoogle Scholar
  34. Riggsbee CW, Deiters A (2010) Recent advances in the photochemical control of protein function. Trends Biotechnol 28(9):468–475CrossRefGoogle Scholar
  35. Sarpeshkar R (2010) Ultra low power bioelectronics: fundamentals, biomedical applications, and bio-inspired systems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  36. Smaldon J, Romero-Campero FJ, Trillo FF, Gheorghe M, Alexander C, Krasnogor N (2010) A computational study of liposome logic: towards cellular computing from the bottom up. Syst Synth Biol 4(3):157–179CrossRefGoogle Scholar
  37. Smuc T, Ahn I-Y, Ulrich H (2013) Nucleic acid aptamers as high affinity ligands in biotechnology and biosensorics. J Pharm Biomed Anal 81–82:210–217CrossRefGoogle Scholar
  38. Song S, Kole S, Bernier M (2012) A chemical cross-linking method for the analysis of binding partners of heat shock protein-90 in intact cells. BioTechniques. doi: 10.2144/000113856
  39. Stanish I, Singh A (2001) Highly stable vesicles composed of a new chain-terminus acetylenic photopolymeric phospholipid. Chem Phys Lipids 112(2):99–108CrossRefGoogle Scholar
  40. Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX-a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24(4):381–403CrossRefGoogle Scholar
  41. Strickland D, Lin Y, Wagner E, Hope CM, Zayner J, Antoniou C, Sosnick TR, Weiss EL, Glotzer M (2012) TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat Methods 9(4):379–384CrossRefGoogle Scholar
  42. Sunami T, Hosoda K, Suzuki H, Matsuura T, Yomo T (2010) Cellular compartment model for exploring the effect of the lipidic membrane on the kinetics of encapsulated biochemical reactions. Langmuir 26(11):8544–8551CrossRefGoogle Scholar
  43. Teh S-Y, Khnouf R, Fan H, Lee AP (2011) Stable, biocompatible lipid vesicle generation by solvent extraction-based droplet microfluidics. Biomicrofluidics 5(4):044113CrossRefGoogle Scholar
  44. Thiele J, Abate AR, Shum HC, Bachtler S, Förster S, Weitz DA (2010) Fabrication of polymersomes using double-emulsion templates in glass-coated stamped microfluidic devices. Small 6(16):1723–1727CrossRefGoogle Scholar
  45. Wakeham MC, Jones MR (2005) Rewiring photosynthesis: engineering wrong-way electron transfer in the purple bacterial reaction centre. Biochem Soc Trans 33:851–857CrossRefGoogle Scholar
  46. Xiang Z, Lacey VK, Ren H, Jing X, Burban DJ, Jennings PA, Wang L (2014) Proximity-enabled protein crosslinking through genetically encoding haloalkane unnatural amino acids. Angew Chem Int Ed 53(8):2190–2193CrossRefGoogle Scholar
  47. Yoshimoto M (2011) Stabilization of enzymes through encapsulation in liposomes. In: Minteer SD (ed) Enzyme stabilization and immobilization. Humana Press, New York, pp 9–18CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1. LRIUniversité Paris Sud - UMR CNRS 8623Orsay CedexFrance
  2. 2. Sys2diagFRE CNRS 3690MontpellierFrance

Personalised recommendations