Acta Biotheoretica

, Volume 60, Issue 3, pp 239–255

Defining Species: A Multi-Level Approach

Regular Article


Different concepts define species at the pattern-level grouping of organisms into discrete clusters, the level of the processes operating within and between populations leading to the formation and maintenance of these clusters, or the level of the inner-organismic genetic and molecular mechanisms that contribute to species cohesion or promote speciation. I argue that, unlike single-level approaches, a multi-level framework takes into account the complex sequences of cause-effect reinforcements leading to the formation and maintenance of various patterns, and allows for revisions and refinements of pattern-based characterizations in light of the gradual elucidation of the causes and mechanisms contributing to pattern formation and maintenance.


Species concepts Speciation Levels Mechanisms Pattern Process 


  1. Achinstein P (2001) The book of evidence. Oxford University Press, OxfordCrossRefGoogle Scholar
  2. Alberti K, Zimmet P (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15(7):539–553CrossRefGoogle Scholar
  3. Avise J, Ball R (1990) Principles of genealogical concordance species in concepts and biological taxonomy. Oxf Surv Evolut Biol 7:45–67Google Scholar
  4. Avise J, Wollenberg K (1997) Phylogenetics and the origin of species. Proc Natl Acad Sci 94:7748–7755CrossRefGoogle Scholar
  5. Ayala F, Escalante A (1996) The evolution of human populations: a molecular perspective. Mol Phylogenet Evol 5:188–201CrossRefGoogle Scholar
  6. Baum D, Donoghue M (1995) Choosing among alternative “phylogenetic” species concepts. Syst Bot 20(4):560–573CrossRefGoogle Scholar
  7. Baum DA, Shaw KL (1995) Genealogical perspectives on the species problem. In: Hoch PC, Stevenson AG (eds) Experimental and molecular approaches to plant binsystematics. Missouri Botanical Garden, St. Louis, pp 289–303Google Scholar
  8. Berlocher S (1999) Host race or species? Allozyme characterization of the ‘flowering dogwood fly’, a member of the rhagoletis pomonella complex. Heredity 83:652–662CrossRefGoogle Scholar
  9. Bradshaw H, Schemske D (2003) Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 426:176–178CrossRefGoogle Scholar
  10. Coyne J (1992) Genetics and speciation. Nature 355:511–515CrossRefGoogle Scholar
  11. Coyne J, Orr H (1998) The evolutionary genetics of speciation. Philos Trans Royal Soc B 353:287–305CrossRefGoogle Scholar
  12. Coyne J, Orr H (2004) Speciation. Sinauer, SunderlandGoogle Scholar
  13. Cracraft J (1983) Species concepts and speciation analysis. Curr Ornithol 1:159–187Google Scholar
  14. Cracraft J (1989) Speciation and its ontology: the empirical consequences of alternative species concepts for understanding patterns and processes of differentiation. In: Otte D, Endler JA (eds) Speciation and its consequences. Sinauer, SunderlandGoogle Scholar
  15. de Queiroz K (1998) The general lineage concept of species, species criteria, and the process of speciation. In: Howard DJ, Berlocher SH (eds) Endless forms: species and speciation. Oxford University Press, New York, pp 57–75Google Scholar
  16. de Queiroz K (2005) Ernst Mayr and the modern concept of species. Proc Natl Acad Sci 102(1):6600–6607CrossRefGoogle Scholar
  17. de Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56(6):879–886CrossRefGoogle Scholar
  18. de Queiroz K, Donoghue M (1988) Phylogenetic systematics and the species problem. Cladistics 4:317–338CrossRefGoogle Scholar
  19. Dobzhansky T (1935) A critique of the species concept in biology. Philos Sci 2:344–355CrossRefGoogle Scholar
  20. Dobzhansky T (1937) Genetics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  21. Ereshefsky M (1992) Eliminative pluralism. Philos Sci 59:671–690CrossRefGoogle Scholar
  22. Ereshefsky M (2010) What’s wrong with the new biological essentialism. Philos Sci 77:674–685CrossRefGoogle Scholar
  23. Figueroa F, Guünter E, Klein J (1988) MHC polymorphism pre-dating speciation. Nature 335:265–267CrossRefGoogle Scholar
  24. Futuyma DJ (1998) Evolutionary biology, 3rd edn. Sinauer Associates, SunderlandGoogle Scholar
  25. Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, Cumminsk LB, Arthur LO, Peeters M, Shaw GM, Sharp PM, Hahn BH (1998) Origin of HIV-1 in the chimpanzee pan troglodytes troglodytes. Nature 397:436–441CrossRefGoogle Scholar
  26. Griffiths P (1999) Squaring the circle: natural kinds with historical essences. In: Wilson R (ed) Species: New Interdisciplinary Studies. MIT Press, CambridgeGoogle Scholar
  27. Harrison R (1998) Linking evolutionary pattern and process: the relevance of species concepts for the study of speciation. In: Howard D, Berlocher S (eds) Endless forms: species and speciation. New York, Oxford University PressGoogle Scholar
  28. Hey J, Kliman R (1993) Population genetics and phylogenetics of DNA sequence variation at multiple loci within the Drosophila melanogaster species complex. Mol Biol Evol 10(4):804–822Google Scholar
  29. Hirsch VM, Olmsted RA, Murphey-Corb M, Purcell RH, Johnson PR (1989) An African primate lentivirus (SIVsm) closely related to HIV-2. Nature 339:389–392CrossRefGoogle Scholar
  30. Hudson H, Coyne J (2002) Mathematical consequences of the genealogical species concept. Evolution 56(8):1557–1565Google Scholar
  31. Kirkpatrick M, Ravigné V (2002) Speciation by natural and sexual selection: models and experiments. Am Nat 159:S22–S35CrossRefGoogle Scholar
  32. Kitcher P (1984) Species. Philos Sci 51:308–333CrossRefGoogle Scholar
  33. Lidén M, Oxelman B (1989) Species—pattern or process? Taxon 38:228–232CrossRefGoogle Scholar
  34. Luckow M (1995) Species concepts: assumptions, methods, and applications. Syst Bot 20:589–605CrossRefGoogle Scholar
  35. Mallet J (1995) A species sefinition for the modern synthesis. Trends Ecol Evol 10:294–299CrossRefGoogle Scholar
  36. Masly JP, Jones CD, Noor MAF, Locke J, Orr H (2006) Gene transposition as a cause of hybrid sterility in Drosophila. Science 313(5792):1448–1450CrossRefGoogle Scholar
  37. Mayden RL (1999) Consilience and a hierarchy of species concepts: advances toward closure on the species puzzle. J Nematol 31(2):95–116Google Scholar
  38. Mayr E (1963) Animal species and evolution. Belknap Press, CambridgeGoogle Scholar
  39. Mayr E (1969) Principles of systematic zoology. McGraw Hill, New YorkGoogle Scholar
  40. Mayr E (1996) What is a species and what is not? PhilosSci 63:262–277Google Scholar
  41. Navarro A, Barton N (2003) Chromosomal speciation and molecular divergence—accelerated evolution in rearranged chromosomes. Science 300:321–324CrossRefGoogle Scholar
  42. Noor M, Feder J (2006) Speciation genetics: evolving approaches. Nat Rev Genet 7(11):851–861CrossRefGoogle Scholar
  43. O’Hara RJ (1993) Systematic Generalization, Historical Fate and the Species Problem. Syst Biol 42:231–246Google Scholar
  44. Orr H, Masly JP, Presgraves DC (2004) Speciation genes. Curr Opin Genet Dev 14(6):675–679CrossRefGoogle Scholar
  45. Paterson H (1985) The recognition concept of species. In: Vrba E (ed) Species and speciation. Transvaal Museum, PretoriaGoogle Scholar
  46. Phadnis N, Orr H (2009) A single gene causes both male sterility and segregation distortion in drosophila hybrids. Science 323(5912):376–379CrossRefGoogle Scholar
  47. Reydon T (2005) On the nature of the species problem and the four meanings of ‘species’. Stud Hist Philos Biol Biomed Sci 36:135–158CrossRefGoogle Scholar
  48. Roediger H, Marsh E, Lee S (2002) Kinds of memory. In: Pashler H, Yantis S, Medin D, Gallistel R, Wixted J (eds) Stevens’ handbook of experimental psychology. Wiley, New YorkGoogle Scholar
  49. Schilthuizen M (2000) Dualism and conflicts in understanding speciation. BioEssays 22:1134–1141CrossRefGoogle Scholar
  50. Schluter D (2009) Evidence for ecological speciation and its alternative. Science 323:737–741CrossRefGoogle Scholar
  51. Shaw KL (1998) Species and the diversity of natural groups. In: Howard DJ, Berlocher SJ (eds) Endless forms: species and speciation. Oxford University Press, Oxford, pp 44–56Google Scholar
  52. Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. W. H. Freeman, San FranciscoGoogle Scholar
  53. Tajima F (1983) Evolutionary relationship of dna sequences in finite populations. Genetics 105:437–460Google Scholar
  54. Templeton A (1989) The meaning of species and speciation: a genetic perspective. In: Otte D, Endler J (eds) Speciation and its consequences. Sinauer, Sunderland, pp 3–27Google Scholar
  55. Van Valen L (1976) Ecological species, multispecies, and oaks. Taxon 25:233–239CrossRefGoogle Scholar
  56. Wiley E (1978) The evolutionary species concept reconsidered. Syst Zool 27:17–26CrossRefGoogle Scholar
  57. Wu C (1994) Genetics of postmating reproductive isolation in animals. Annu Rev Genet 28:283–308CrossRefGoogle Scholar
  58. Yu Q, Colot HV, Kyriacou CP, Hall JC, Rosbash M (1987) Behaviour modification by in vitro mutagenesis of a variable region within the period gene of Drosophila. Nature 326:765–769CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of MarylandCollege ParkUSA

Personalised recommendations