Acta Biotheoretica

, Volume 59, Issue 3–4, pp 291–312

Solvent Dielectric Effect and Side Chain Mutation on the Structural Stability of Burkholderia cepacia Lipase Active Site: A Quantum Mechanical/Molecular Mechanics Study

Regular Article


Quantum mechanical and molecular dynamics methods were used to analyze the structure and stability of neutral and zwitterionic configurations of the extracted active site sequence from a Burkholderia cepacia lipase, histidyl-seryl-glutamin (His86-Ser87-Gln88) and its mutated form, histidyl-cysteyl-glutamin (His86-Cys87-Gln88) in vacuum and different solvents. The effects of solvent dielectric constant, explicit and implicit water molecules and side chain mutation on the structure and stability of this sequence in both neutral and zwitterionic forms are represented. The quantum mechanics computations represent that the relative stability of zwitterionic and neutral configurations depends on the solvent structure and its dielectric constant. Therefore, in vacuum and the considered non-polar solvents, the neutral form of the interested sequences is more stable than the zwitterionic form, while their zwitterionic form is more stable than the neutral form in the aqueous solution and the investigated polar solvents in most cases. However, on the potential energy surfaces calculated, there is a barrier to proton transfer from the positively charged ammonium group to the negatively charged carboxylat group or from the ammonium group to the adjacent carbonyl oxygen and or from side chain oxygen and sulfur to negatively charged carboxylat group. Molecular dynamics simulations (MD) were also performed by using periodic boundary conditions for the zwitterionic configuration of the hydrated molecules in a box of water molecules. The obtained results demonstrated that the presence of explicit water molecules provides the more compact structures of the studied molecules. These simulations also indicated that side chain mutation and replacement of sulfur with oxygen leads to reduction of molecular flexibility and packing.


Burkholderia cepacia lipase Solvent effect Side chain mutation Molecular dynamics simulation 


  1. Becke AD (1993) Density functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. doi:10.1063/1.464913 CrossRefGoogle Scholar
  2. Berendsen HJC, Postma JPM, Van Gunsteren WF, Dinola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. doi:10.1063/1.448118 CrossRefGoogle Scholar
  3. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comp Chem 4:187–217. doi:10.1002/jcc.540040211 CrossRefGoogle Scholar
  4. Brünger AT, Karplus M (1988) Polar hydrogen positions in proteins: Empirical energy placement and neutron diffraction comparison. Proteins Struct Funct Bioinformatics 4:148–156. doi:10.1002/prot.340040208 Google Scholar
  5. Creighton TE (1993) Proteins: structures and molecular properties. W.H. Freeman, New YorkGoogle Scholar
  6. Faber K (1997) Biotransformations in organic chemistry, 3rd edn. Springer, BerlinGoogle Scholar
  7. Foresman JB, Frisch Æ (1996) Exploring chemistry with electronic structure methods, 2nd edn. Gaussian Inc, Pittsburgh, PAGoogle Scholar
  8. Frisch MJ, Trucks GW, Schlegel HB, Pople JA et al (1998) Gaussian. Inc, Pittsburgh, PAGoogle Scholar
  9. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1988) NBO Version 3.1Google Scholar
  10. Grochulski P, Li YG, Schrag JD, Bouthillier F, Smith P, Harrison D, Rubin B, Cygler M (1993) Insights into interfacial activation from an open structure of Candida rugosa lipase. J Mol Catal B: Enzym 268:12843–12847. doi:10.2210/pdb1crl/pdb Google Scholar
  11. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723. doi:10.1002/elps.1150181505 CrossRefGoogle Scholar
  12. Guieysse D, Salagnad C, Monsan P, Remaud-Simeon M, Tran V (2003) Towards a novel explanation of Pseudomonas cepacia lipase enantioselectivity via molecular modelling of the enantiomer trajectory into the active site. Tetrahedron Asym 14:1807–1817. doi:10.1016/S0957-4166(03)00374-4 CrossRefGoogle Scholar
  13. Han D, Rhee JS (1986) Characteristics of lipase-catalyzed hydrolysis of olive oil in AOT-isooctane reversed micelles. Biotechnol Bioeng 28:1250–1255. doi:10.1002/bit.260280817 CrossRefGoogle Scholar
  14. Havel HA (1996) Spectroscopic methods for determining protein structure in solution. VCH, New YorkGoogle Scholar
  15. Honig B, Sharp K, Yang AS (1993) Macroscopic models of aqueous solutions: biological and chemical applications. J Phys Chem 97:1101–1109. doi:10.1021/j100108a002 CrossRefGoogle Scholar
  16. Jacoby SLS, Kowalik KS, Pizzo JT (1972) Iterative methods for nonlinear optimization problems. Prentice-Hall, Englewood Cliffs, NJGoogle Scholar
  17. Jalkanen KJ, Suhai S (1996) N-acetyl-l-alanine N′-methylamide: a density functional analysis of the vibrational absorption and vibrational circular dichroism spectra. Chem Phys 208:81–116. doi:10.1016/0301-0104(96)00042-0 CrossRefGoogle Scholar
  18. Jorgensen WL, Chandrasekhar J, Madura JD (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–936. doi:10.1063/1.445869 CrossRefGoogle Scholar
  19. Kim KK, Song HK, Shin DH, Hwang KY, Suh SW (1997) The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure 5:173–185. doi:10.1016/S0969-2126(97)00177-9 CrossRefGoogle Scholar
  20. Lang DA, Mannesse MLM, De Haas GH, Verheij HM, Dijkstra BW (1998) Structural basis of the chiral selectivity of Pseudomonas cepacia lipase. Eur J Biochem 254:333–340. doi:10.1046/j.1432-1327.1998.2540333.x CrossRefGoogle Scholar
  21. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  22. Ljubovic E, Sunjic V (2000) Comparative study of conformational effects on stereoselective lipase catalysed acetylation of sec hydroxy groups in diastereomeric 14-membered lactones and their acyclic analogs. Tetrahedron Lett 41:9135–9138. doi:10.1016/S0040-4039(00)01634-8 CrossRefGoogle Scholar
  23. Lui′c M, Tomi′c S, Leščić I, Ljubovi′c E, Sepac D, Sunji′c V, Vitale LJ, Saenger W, Koji′c-Prodi′c B (2001) Complex of Burkholderia cepacia lipase with transition state analogue of 1-phenoxy-2-acetoxybutane. Eur J Biochem 268:3964–3973. doi:10.1046/j.1432-1327.2001.02303.x Google Scholar
  24. MacKerell ADJ, Bashford D, Bellott M et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616. doi:10.1021/jp973084f CrossRefGoogle Scholar
  25. Pugazhenthi G, Kumar A (2004) Enzyme membrane reactor for hydrolysis of olive oil using lipase immobilized on modified PMMA composite membrane. J Membr Sci 228:187–197. doi:10.1016/j.memsci.2003.10.007 CrossRefGoogle Scholar
  26. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926. doi:10.1021/cr00088a005 CrossRefGoogle Scholar
  27. Schmid RD, Verger R (1998) Lipases: interfacial enzymes with attractive applications. Angew Chem Int Ed Engl 37:1608–1633. doi:10.1002/(SICI)1521-3773(19980703)37:12<1608:AID-ANIE1608>3.0.CO; 2-V CrossRefGoogle Scholar
  28. Tafi A, van Almsick A, Corelli F, Crusco M, Laumen KE, Schneider MP, Botta M (2000) Computer simulations of enantioselective ester hydrolyses catalyzed by Pseudomonas cepacia lipase. J Org Chem 65:3659–3665. doi:10.1021/jo9919198 CrossRefGoogle Scholar
  29. Tafi A, Manetti F, Botta M, Casati S, Santaniello E (2004) A drop of enantioselectivity in the Pseudomonas cepacia lipase-catalyzed ester hydrolysis is influenced by the chain length of the fatty acid. Tetrahedron Asym 15:2345–2350. doi:10.1016/j.tetasy.2004.06.010 CrossRefGoogle Scholar
  30. Tajkhorshid E, Paizs B, Suhai S (1997) Conformational effects on the proton affinity of the Schiff base in bacteriorhodopsin: a density functional study. J Phys Chem B 101:8021–8028. doi:10.1021/jp971283t CrossRefGoogle Scholar
  31. Tomasi J, Persico M (1994) Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem Rev 94:2027–2094. doi:10.1002/chin.199508316 CrossRefGoogle Scholar
  32. Tomić S, Kojić-Prodić B (2002) A quantitative model for predicting enzyme enantioselectivity: application to Burkholderia cepacia lipase and 3-(aryloxy)-1, 2-propanediol derivatives. J Mol Graph Model 21:241–252. doi:10.1016/S1093-3263(02)00148-1 CrossRefGoogle Scholar
  33. Tuomi WV, Kazlauskas RJ (1999) Molecular basis for enantioselectivity of lipase from Pseudomonas cepacia toward primary alcohols. Modeling, kinetics, and chemical modification of Tyr29 to increase or decrease enantioselectivity. J Org Chem 64:2638–2647. doi: 10.1021/jo981783y Google Scholar
  34. Wiberg KB (1965) A Scheme for strain energy minimization. Application to the cycloalkanes. J Am Chem Soc 87:1070–1078. doi:10.1021/ja01083a024 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Semnan BranchIslamic Azad UniversitySemnanIran
  2. 2.Department of Chemistry, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations