Advertisement

Acta Biotheoretica

, Volume 58, Issue 4, pp 329–340 | Cite as

Lattice-Gas Cellular Automaton Models for Biology: From Fluids to Cells

  • Bastien Chopard
  • Rafik Ouared
  • Andreas Deutsch
  • Haralambos Hatzikirou
  • Dieter Wolf-Gladrow
Regular Article

Abstract

Lattice-gas cellular automaton (LGCA) and lattice Boltzmann (LB) models are promising models for studying emergent behaviour of transport and interaction processes in biological systems. In this chapter, we will emphasise the use of LGCA/LB models and the derivation and analysis of LGCA models ranging from the classical example dynamics of fluid flow to clotting phenomena in cerebral aneurysms and the invasion of tumour cells.

Keywords

Lattice-gas cellular automaton Lattice Boltzmann model Discrete dynamical system Tumour invasion Blood clotting Collective behaviour 

References

  1. Bell DN, Spain S, Goldsmith HL (1989) Adenosine diphosphate-induced aggregation of human platelets in flow through tubes. I. Measurement of concentration and size of single platelets and aggregates. Biophys J 56(5):829–843CrossRefGoogle Scholar
  2. Bru A, Albertos S, Subiza JL, Garcia-Asenjo JL, Bru I (2003) The universal dynamics of tumor growth. Bioph J 85:2948–2961CrossRefGoogle Scholar
  3. Chen S, Doolen GD (1998) Lattice Boltzmann methods for fluid flows. Annu Rev Fluid Mech 30:329CrossRefGoogle Scholar
  4. Chopard B, Droz M (1998) Cellular automata modeling of physical systems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  5. Chopard B, Ouared R, Stahl B, Rufenacht DA, Yilmaz H, Courbebaisse G (2005) Thrombosis modeling in intracranial aneurysms: a lattice Boltzmann numerical algorithm. Comput Phys Commun 179(1–3):128–131Google Scholar
  6. Davis PF (1995) Flow-mediated endothelial mechanotransduction. Physio Rev 75:519–560Google Scholar
  7. Deutsch A, Dormann S (2005) Cellular automaton modeling of biological pattern formation. BirkhauserGoogle Scholar
  8. Folkman J, Hochberg M (1973) Self-regulation of growth in three dimensions. J Exp Med 138:745–753CrossRefGoogle Scholar
  9. Friedl P (2004) Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol 16(1):14–23CrossRefGoogle Scholar
  10. Frisch U, Hasslacher B, Pomeau Y (1986) Lattice-gas automata for the Navier-Stokes equation. Phys Rev Lett 56(14):1505–1508CrossRefGoogle Scholar
  11. Hanahan D, Weinberg R (2000) The hallmarks of cancer. Cell 100:57–70CrossRefGoogle Scholar
  12. Hardy J, Pomeau Y, de Pazzis O (1973) Time evolution of a two-dimensional classical lattice system. Phys Rev Lett 31:276–279CrossRefGoogle Scholar
  13. Hatzikirou H, Deutsch A (2008) Cellular automata as microscopic models of cell migration in heterogeneous environments. Curr Top Dev Biol 81:401–434CrossRefGoogle Scholar
  14. Hatzikirou H, Brusch L, Schaller C, Simon M, Deutsch A (2010) Prediction of traveling front behavior in a lattice-gas cellular automaton model for tumor invasion. Comput Math Appl 59(7):2326–2339CrossRefGoogle Scholar
  15. Hénon M (1987) Isometric collision rules for a four-dimensional fchc lattice gas. Compl Syst 1:475Google Scholar
  16. Hirabayashi M, Rufenacht DA, Otha M, Chopard B (2003) Characterization of flow reduction in an aneurysm due to a porous stent. Phys Rev E 68:021918CrossRefGoogle Scholar
  17. Humphrey JD (2001) Cardiovascular solid mechanicsGoogle Scholar
  18. Moroi M, Jung SM (1998) Integrin-mediated platelet adhesion. Front Biosci 3:d719–728Google Scholar
  19. Nasilowski R (1991) A cellular-automaton fluid model with simple rules in arbitrary many dimensions. J Stat Phys 65(2):97–138CrossRefGoogle Scholar
  20. Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194:23–28CrossRefGoogle Scholar
  21. Ouared R, Chopard B (2005) Lattice Boltzmann simulations of blood flow: non-newtonian rheolgy and clotting processes. J Stat Phys 121(1-2):209–221CrossRefGoogle Scholar
  22. Rem PC, Somers JA (1989) Cellular automata algorithms on a transputer network. In: Monaco R (ed) Discrete kinematic theory, lattice gas dynamics and foundations of hydrodynamics. World Scientific, Singapore, pp 268–275Google Scholar
  23. Ruefenacht DA, Chopard B, Ouared R, Yilmaz H (2007) Lattice Boltzmann modeling of thrombosis in giant aneurysms. Int J Mod Phys C 18:712–721CrossRefGoogle Scholar
  24. Somers JA, Rem PC (1989) The construction of efficient collision tables for fluid flow. In: Manneville P, Boccara N, Vichniac GY, Bidaux R (eds) Cellular automata and modeling of complex physical systems. Springer, Berlin, pp 161–177Google Scholar
  25. Succi S (2001) The lattice Boltzmann equation: for fluid dynamics and beyond. Series Numerical Mathematics and Scientific Computation. Oxford University Press, OxfordGoogle Scholar
  26. Tektonidis M (2008) Parameter optimization in a cellular automaton model of cancer growth based on medical MRI data. Master’s thesis. TU BerlinGoogle Scholar
  27. Teng MMH et al (2003) MR imaging of giant intracranial aneurysm. J Clin Neuros 10(4):460–464CrossRefGoogle Scholar
  28. Whittle IR, Dorsch NW, Besser M (1982) Spontaneous thrombosis in giant intracranial aneurysms. J Neurol Neurosurg Psychiat 45(11):1040–1047CrossRefGoogle Scholar
  29. Williams RH, Nollert MU (2004) Platelet-derived no slows thrombus growth on a collagen type iii surface. Thrombosis J 2:1–11CrossRefGoogle Scholar
  30. Wolf-Gladrow DA (2000) Lattice-gas cellular automata and lattice Boltzmann models: an Introduction. Springer, BerlinGoogle Scholar
  31. Wolfram S (1986) Theory and application of cellular automata. World Scientific, SingaporeGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Bastien Chopard
    • 1
  • Rafik Ouared
    • 1
  • Andreas Deutsch
    • 2
  • Haralambos Hatzikirou
    • 2
  • Dieter Wolf-Gladrow
    • 3
  1. 1.University of GenevaGenevaSwitzerland
  2. 2.Center for Information Services and High Performance ComputingTechnische Universität DresdenDresdenGermany
  3. 3.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany

Personalised recommendations