Acta Biotheoretica

, Volume 58, Issue 4, pp 315–327 | Cite as

Modeling Mechanisms of Cell Secretion

  • Krasimira Tsaneva-Atanasova
  • Hinke M. Osinga
  • Joël Tabak
  • Morten Gram Pedersen
Regular Article

Abstract

Secretion is a fundamental cellular process involving the regulated release of intracellular products from cells. Physiological functions such as neurotransmission, or the release of hormones and digestive enzymes, are all governed by cell secretion. Anomalies in the processes involved in secretion contribute to the development and progression of diseases such as diabetes and other hormonal disorders. To unravel the mechanisms that govern such diseases, it is essential to understand how hormones, growth factors and neurotransmitters are synthesized and processed, and how their signals are recognized, amplified and transmitted by intracellular signaling pathways in the target cells. Here, we discuss diverse aspects of the detailed mechanisms involved in secretion based on mathematical models. The models range from stochastic ones describing the trafficking of secretory vesicles to deterministic ones investigating the regulation of cellular processes that underlie hormonal secretion. In all cases, the models are closely related to experimental results and suggest theoretical predictions for the secretion mechanisms.

Keywords

Mathematical model Vesicles Bifurcation analysis Exocytosis Hormone secretion 

References

  1. Atwater I, Dawson C, Scott A, Eddlestone G, Rojas E (1980) The nature of the oscillatory behaviour in electrical activity from pancreatic beta-cell. Horm Metab Res Suppl Suppl 10:100–107Google Scholar
  2. Barg S, Rorsman P (2004) Insulin secretion: a high-affinity Ca2+ sensor after all? J Gen Physiol 124(6):623–625CrossRefGoogle Scholar
  3. Beauvois M, Merezak C, Jonas J, Ravier M, Henquin J, Gilon P (2006) Glucose-induced mixed \([\hbox{Ca}^2+]_{\rm c}\) oscillations in mouse beta-cells are controlled by the membrane potential and the SERCA3 Ca2 + -ATPase of the endoplasmic reticulum. Am J Physiol-Cell Physiol 290(6):C1503–C1511CrossRefGoogle Scholar
  4. Ben-Jonathan N, Hnasko R (2004) Dopamine as a prolactin (PRL) inhibitor. Endocr Rev 22(6):724–763CrossRefGoogle Scholar
  5. Bertram R, Sherman A, Satin L (2007) Metabolic and electrical oscillations: partners in controlling pulsatile insulin secretion. Am J Physiol.-Endocrinol Metabol 293(4):E890CrossRefGoogle Scholar
  6. Bertuzzi A, Salinari S, Mingrone G (2007) Insulin granule trafficking in β-cells: mathematical model of glucose-induced insulin secretion. Am J Physiol.-Endocrinol Metabol 293(1):E396CrossRefGoogle Scholar
  7. Braun M, Ramracheya R, Bengtsson M, Zhang Q, Karanauskaite J, Partridge C, Johnson P, Rorsman P (2008) Voltage-gated ion channels in human pancreatic β-cells: electrophysiological characterization and role in insulin secretion. Diabetes 57(6):1618–1628CrossRefGoogle Scholar
  8. Burris T, Freeman M (1993) Low concentrations of dopamine increase cytosolic calcium in lactotrophs. Endocrinology 133(1):63–68CrossRefGoogle Scholar
  9. Cabrera O, Berman D, Kenyon N, Ricordi C, Berggren P, Caicedo A (2006) The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci USA 103(7):2334–2339CrossRefGoogle Scholar
  10. Cerasi E, Fick G, Rudemo M (1974) A mathematical model for the glucose induced insulin release in man. Eur J Clin Invest 4(4):267–278CrossRefGoogle Scholar
  11. Chen Y, Wang S, Sherman A (2008) Identifying the targets of the amplifying pathway for insulin secretion in pancreatic β-cells by kinetic modeling of granule exocytosis. Biophys J 95(5):2226–2241CrossRefGoogle Scholar
  12. Daniel S, Noda M, Straub S, Sharp G (1999) Identification of the docked granule pool responsible for the first phase of glucose-stimulated insulin secretion. Diabetes 48(9):1686–1690CrossRefGoogle Scholar
  13. Denef C, Manet D, Dewals R (1980) Dopaminergic stimulation of prolactin releaseGoogle Scholar
  14. Fridlyand L, Harbeck M, Roe M, Philipson L (2007) Regulation of cAMP dynamics by Ca2+ and G protein-coupled receptors in the pancreatic β-cell: a computational approach. Am J Physiol-Cell Physiol 293(6):C1924CrossRefGoogle Scholar
  15. Grodsky G (1972) A threshold distribution hypothesis for packet storage of insulin and its mathematical modeling. J Clin Invest 51(8):2047–2059CrossRefGoogle Scholar
  16. Holcman D, Schuss Z (2004) Escape through a small opening: Receptor trafficking in a synaptic membrane. J Stat Phys V 117(5):975–1014CrossRefGoogle Scholar
  17. Jonas J, Gilon P, Henquin J (1998) Temporal and quantitative correlations between insulin secretion and stably elevated or oscillatory cytoplasmic Ca2+ in mouse pancreatic β-cells. Diabetes 47(8):1266–1273CrossRefGoogle Scholar
  18. Jonkers F, Henquin J (2001) Measurements of cytoplasmic Ca2 + in islet cell clusters show that glucose rapidly recruits β-cells and gradually increases the individual cell response. Diabetes 50:540–550CrossRefGoogle Scholar
  19. Krauskopf B, Osinga H (2007) Computing invariant manifolds via the continuation of orbit segments. In: Krauskopf B, Osinga HM, Galán-Vioque J (eds) Numerical Continuation Methods for Dynamical Systems: Path following and boundary value problems. Springer-Verlag, pp 117–154Google Scholar
  20. Licko V (1973) Threshold secretory mechanism: a model of derivative element in biological control. Bull Math Biol 35:51–58Google Scholar
  21. Nesher R, Cerasi E (2002) Modeling phasic insulin release. Diabetes 51:53–58CrossRefGoogle Scholar
  22. Nowacki J, Mazlan SH, Osinga HM, Tsaneva-Atanasova KT (2010) The role of large-conductance calcium-activated K + (BK) channels in shaping bursting oscillations of a somatotroph cell model. Phys D 239(9):485–493CrossRefGoogle Scholar
  23. Olofsson C, Göpel S, Barg S, Galvanovskis J, Ma X, Salehi A, Rorsman P, Eliasson L (2002) Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic β-cells. Pflüg Archiv Eur J Physiol 444(1):43–51CrossRefGoogle Scholar
  24. Pedersen M (2009) Contributions of mathematical modeling of beta cells to the understanding of beta-cell oscillations and insulin secretion. J Diabet Sci Tech 3:12–20Google Scholar
  25. Pedersen M, Sherman A (2009) Newcomer insulin secretory granules as a highly calcium-sensitive pool. Proc Natl Acad Sci USA 106(18):7432CrossRefGoogle Scholar
  26. Pedersen M, Corradin A, Toffolo G, Cobelli C (2008) A subcellular model of glucose-stimulated pancreatic insulin secretion. Phil Trans R Soc A 366(1880):3525CrossRefGoogle Scholar
  27. Pedersen M, Toffolo G, Cobelli C (2010) Cellular modeling: insight into oral minimal models of insulin secretion. Am J Phys-Endocrinol Metabol 298(3):E597CrossRefGoogle Scholar
  28. Schuss Z (1980) Theory and applications of stochastic differential equations. Wiley, New YorkGoogle Scholar
  29. Sherman A, Rinzel J (1992) Rhythmogenic effects of weak electrotonic coupling in neuronal models. Proc Natl Acad Sci USA 89(6):2471–2474CrossRefGoogle Scholar
  30. Soria B, Andreu E, Berna G, Fuentes E, Gil A, León-Quinto T, Martín F, Montanya E, Nadal A, Reig J, et al (2000) Engineering pancreatic islets. Pflüg Archiv Eur J Physiol 440(1):1–18Google Scholar
  31. Tabak J, Toporikova N, Freeman M, Bertram R (2007) Low dose of dopamine may stimulate prolactin secretion by increasing fast potassium currents. J Comput Neurosci 22(2):211–222CrossRefGoogle Scholar
  32. Toffolo G, Breda E, Cavaghan M, Ehrmann D, Polonsky K, Cobelli C (2001) Quantitative indexes of β-cell function during graded up&down glucose infusion from C-peptide minimal models. Am J Physiol-Endocrinol Metabol 280(1):2–10Google Scholar
  33. Toporikova N, Tabak J, Freeman M, Bertram R (2008) A-type K+ current can act as a trigger for bursting in the absence of a slow variable. Neural Comput 20(2):436–451CrossRefGoogle Scholar
  34. Trifaro J, Gasman S, Gutierrez L (2008) Cytoskeletal control of vesicle transport and exocytosis in chromaffin cells. Acta Physiol 192(2):165–172CrossRefGoogle Scholar
  35. Tsaneva-Atanasova K, Burgo A, Galli T, Holcman D (2009) Quantifying neurite growth mediated by interactions among secretory vesicles, microtubules, and actin networks. Biophys J 96(3):840–857CrossRefGoogle Scholar
  36. Tsaneva-Atanasova K, Sherman A, van Goor F, Stojilkovic S (2007) Mechanism of spontaneous and receptor-controlled electrical activity in pituitary somatotrophs: experiments and theory. J Neurophysiol 98(1):131–144CrossRefGoogle Scholar
  37. van Goor F, Li Y, Stojilkovic S (2001a) Paradoxical role of large-conductance calcium-activated K+ (BK) channels in controlling action potential-driven Ca2+ entry in anterior pituitary cells. J Neurosci 21(16):5902–5915Google Scholar
  38. van Goor F, Zivadinovic D, Martinez-Fuentes A, Stojilkovic S (2001b) Dependence of pituitary hormone secretion on the pattern of spontaneous voltage-gated calcium influx. cell type-specific action potential secretion coupling. J Biol Chem 276(36):33840–33846Google Scholar
  39. Wan Q, Dong Y, Yang H, Lou X, Ding J, Xu T (2004) Protein kinase activation increases insulin secretion by sensitizing the secretory machinery to Ca2+. J Gen Physiol 124(6):653–662CrossRefGoogle Scholar
  40. Yang Y, Gillis K (2004) A highly Ca2+-sensitive pool of granules is regulated by glucose and protein kinases in insulin-secreting INS-1 cells. J Gen Physiol 124(6):641–651CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Krasimira Tsaneva-Atanasova
    • 1
  • Hinke M. Osinga
    • 1
  • Joël Tabak
    • 2
  • Morten Gram Pedersen
    • 3
  1. 1.Bristol Centre for Applied Nonlinear Mathematics, Department of Engineering MathematicsUniversity of BristolBristolUK
  2. 2.Department of Biological ScienceFlorida State UniversityTallahasseeUSA
  3. 3.Department of Information EngineeringUniversity of PaduaPaduaItaly

Personalised recommendations