Advertisement

Acta Biotheoretica

, Volume 57, Issue 1–2, pp 99–127 | Cite as

Rational Disagreements in Phylogenetics

  • Fabrizzio Guerrero Mc Manus
Regular article

Abstract

This paper addresses the general problem of how to rationally choose an algorithm for phylogenetic inference. Specifically, the controversy between maximum likelihood (ML) and maximum parsimony (MP) perspectives is reframed within the philosophical issue of theory choice. A Kuhnian approach in which rationality is bounded and value-laden is offered and construed through the notion of a Style of Modeling. A Style is divided into four stages: collecting remnant models, constructing models of taxonomical identity, implementing modeling algorithms, and finally inferring and confirming evolutionary trees or cladograms. The identification and investigation of styles is useful for exploring sociological and epistemological issues such as individuating scientific communities and assessing the rationality of algorithm choice. Regarding the last point, this paper suggests that the values motivating ML and MP perspectives are justified but only contextually; these algorithms also have normative force because they can be therapeutic by allowing us to rationally choose among several competing trees, nonetheless this force is limited and cannot be used in order to decide the controversy tout court.

Keywords

Phylogenetic inference Rationality Rational disagreements Styles of modeling Maximum parsimony Maximum likelihood 

Notes

Acknowledgments

First and foremost I want to thank Rasmus Winther and Paco Vergara. They have been, are, and surely will remain as great influences in my life. They have been my teachers and also my friends. Thanks for inviting me to join this particular project as well. I also want to thank Martha Martínez and Helga Ochoterena, who have also taught me a lot about Systematics and motivated, by doing that, many of the points here presented; any failure is of course only mine. I would also like to thank Gabriela Guerrero’s technical assistance when writing this paper. And lastly, I want to thank those philosophers who have greatly influenced my thinking: Ana Rosa Pérez Ransanz (How could I possibly understand Kuhn without your guidance), Sergio Martínez and Ángeles Eraña (your reflections on rationality have been an inspiration), and finally I want to thank Carlos López Beltrán for teaching me how history matters even in the realm of reason.

References

  1. Amundson R (2005) The changing role of the embryo in evolutionary thought: structure and synthesis. Cambridge University Press, CambridgeGoogle Scholar
  2. Anderson FE, Swofford DL (2004) Should we be worried about long-branch attraction in real data sets? Investigations using metazoan 18S rDNA. Mol Phylogenet Evol 33:440–451. doi: 10.1016/j.ympev.2004.06.015 CrossRefGoogle Scholar
  3. Bergsten J (2005) A review of long-branch attraction. Cladistics 21:163–193. doi: 10.1111/j.1096-0031.2005.00059.x CrossRefGoogle Scholar
  4. Bock WJ (2004) Explanation in systematics. In: Williams DM, Forey PL (eds) Milestones in systematics. CRC Press, Boca RatonGoogle Scholar
  5. Brower AVZ (2000) Evolution is not a necessary assumption of cladistics. Cladistics 16:143–154. doi: 10.1111/j.1096-0031.2000.tb00351.x CrossRefGoogle Scholar
  6. Buckley T (2000) New perspectives on parsimony and likelihood. Trends Ecol Evol 15(9):356. doi: 10.1016/S0169-5347(00)01945-5 CrossRefGoogle Scholar
  7. De Queiroz K, Poe S (2001) Philosophy and phylogenetic inference: a comparison of likelihood and parsimony methods in the context of Karl Popper’s writings on corroboration. Syst Biol 50(3):305–321. doi: 10.1080/106351501300317941 CrossRefGoogle Scholar
  8. Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284(5423):2124–2128. doi: 10.1126/science.284.5423.2124 CrossRefGoogle Scholar
  9. Doolittle WF, Bapteste E (2007) Pattern pluralism and the tree of life hypothesis. Proc Natl Acad Sci USA 104(7):2043–2049. doi: 10.1073/pnas.0610699104 CrossRefGoogle Scholar
  10. Dupré J (2002) Humans and other animals. Oxford University Press, OxfordGoogle Scholar
  11. Echeverría J (2006) Dos Dogmas del racionalismo (y una propuesta alternativa) (Manuscript)Google Scholar
  12. Faith DP (2006) Science and philosophy for molecular systematics: which is the cart and which is the horse? Mol Phylogenet Evol 38(2):553–557. doi: 10.1016/j.ympev.2005.08.018 CrossRefGoogle Scholar
  13. Faith DP, Trueman JWH (2001) Towards an inclusive philosophy for phylogenetic inference. Syst Biol 50(3):331–350. doi: 10.1080/106351501300317969 CrossRefGoogle Scholar
  14. Farris JS, Källersjö M, Albert VA, Allard M, Anderberg A, Bowditch B, Bult C, Carpenter JM, Crowe TM, De Laet J, Fitzhugh K, Frost D, Goloboff P, Humphries CJ, Jondelius U, Judd D, Karis PO, Lipscomb D, Luckow M, Mindell D, Muona J, Nixon K, Presch W, Seberg O, Siddall ME, Struwe L, Tehler A, Wenzel J, Wheeler Q, Wheeler W (1995) Explanation. Cladistics 11:211–218. doi: 10.1111/j.1096-0031.1995.tb00086.x CrossRefGoogle Scholar
  15. Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27:401–410. doi: 10.2307/2412923 CrossRefGoogle Scholar
  16. Felsenstein J (1981) Evolutionary trees from DNA sequences: maximum likelihood approach. J Mol Evol 17:368–376. doi: 10.1007/BF01734359 CrossRefGoogle Scholar
  17. Feyerabend PK (1970) Consuelos para el especialista. In: Lakatos I, Musgrave A (eds) La crítica y el desarrollo del conocimiento. Ediciones Grijalbo, España, 1975Google Scholar
  18. Fitzhugh K (2006) The philosophical basis of character coding for the inference of phylogenetic hypotheses. Zool Scr 35(3):261–286. doi: 10.1111/j.1463-6409.2006.00229.x CrossRefGoogle Scholar
  19. Griesemer J (1990) Modeling in the museum: on the roleof remnant models in the work of Joseph Grinell. Biol Philos 5:3–36. doi: 10.1007/BF02423831 CrossRefGoogle Scholar
  20. Hacking I (1983) Representing and intervening: introductory topics in the philosophy of natural science. Cambridge University Press, CambridgeGoogle Scholar
  21. Helfenbein KG, DeSalle R (2005) Falsifications and corroborations: Karl Popper’s influence on systematics. Mol Phylogenet Evol 35:271–280. doi: 10.1016/j.ympev.2005.01.003 CrossRefGoogle Scholar
  22. Hennig W (1966) Phylogenetic systematics. University of illinois Press, UrbanaGoogle Scholar
  23. Huelsenbeck JP (1997) Is the Felsenstein zone a fly trap? Syst Biol 46:69–74. doi: 10.2307/2413636 Google Scholar
  24. Hull D (1988) Science as a process. University of Chicago Press, ChicagoGoogle Scholar
  25. Kluge AG (1999) The science of phylogenetic systematics: explanation, prediction, and test. Cladistics 15:429–436. doi: 10.1111/j.1096-0031.1999.tb00279.x CrossRefGoogle Scholar
  26. Kluge AG (2001) Parsimony with and without scientific justification. Cladistics 17:199–210. doi: 10.1111/j.1096-0031.2001.tb00117.x CrossRefGoogle Scholar
  27. Kuhn TS (1969) La estructura de las Revoluciones científicas (Postdata). FCE, MéxicoGoogle Scholar
  28. Kuhn TS (1971) Las revoluciones como cambios de la concepción del mundo. In: Pérez Ransanz AR, Olivé L (eds) Filosofía de la Ciencia: Teoría y observación. Siglo XXI-UNAM, MéxicoGoogle Scholar
  29. Kuhn TS (1977a) Objectivity, value judgment, and theory choice in the essential tension. The University of Chicago Press, ChicagoGoogle Scholar
  30. Kuhn TS (1977b) Second thoughts on paradigms. In: Kuhn TS (ed) The essential tension. The University of Chicago Press, ChicagoGoogle Scholar
  31. Kuhn TS (1977c) Metaphor in science. In: Conant J, Haugeland J (eds) The road since structure. The University of Chicago Press, ChicagoGoogle Scholar
  32. Kuhn TS (1983a) Conmensurabilidad, comparabilidad y compatibilidad in ¿Qué son las Revoluciones Científicas? y otros ensayos. Paidós, España, 1989Google Scholar
  33. Kuhn TS (1983b) Racionalidad y elección de Teorías in ¿Qué son las Revoluciones Científicas? y otros ensayos. Paidós, España, 1989Google Scholar
  34. Kuhn TS (1987) ¿Qué son las revoluciones científicas? in ¿Qué son las Revoluciones Científicas? y otros ensayos. Paidós, España, 1989Google Scholar
  35. Kuhn TS (1991) The road since structure. In: Conant J, Haugeland J (eds) The road since structure. The University of Chicago Press, ChicagoGoogle Scholar
  36. Longino HE (1990) Science as social knowledge: values and objectivity in scientific inquiry. Princeton University Press, PrincetonGoogle Scholar
  37. Longino HE (1993) Subjects, power and knowledge: descriptions and prescriptions in feminist philosophies of science. In: Alcoff L, Potter E (eds) Feminist epistemologies. Routledge, LondonGoogle Scholar
  38. Longino HE (1995) Gender. Political Theor Virtues Synth 104:383–397Google Scholar
  39. Longino HE (2000) Toward an epistemology for biological pluralism. In: Creath R, Maienschein J (eds) Biology and epistemology. Cambridge University Press, Cambridge, pp 261–286Google Scholar
  40. Longino HE (2002) The fate of knowledge. Princeton University Press, PrincetonGoogle Scholar
  41. Lyons-Weiler J, Guy A, Hoelzer GA (1997) Escaping from the Felsenstein zone by detecting long branches in phylogenetic data. Mol Phylogenet Evol 8(3):375–384. doi: 10.1006/mpev.1997.0450 CrossRefGoogle Scholar
  42. Pérez Ransanz AR (1999) Kuhn y el cambio científico. FCE, MéxicoGoogle Scholar
  43. Popper K (1962) La Lógica de la Investigación Científica. In: Tecnos (ed) MadridGoogle Scholar
  44. Popper K (1963) Conjectures and refutations: the growth of scientific knowledge. Routledge, LondonGoogle Scholar
  45. Rescher N (1993) La Racionalidad. Tecnos, SpainGoogle Scholar
  46. Richards R (2002) Kuhnian values and cladistic parsimony. Perspect Sci 10:1–27. doi: 10.1162/106361402762674780 CrossRefGoogle Scholar
  47. Rieppel O (2003) Popper and systematics. Syst Biol 52(2):259–271. doi: 10.1080/10635150390192762 CrossRefGoogle Scholar
  48. Rieppel O (2005) A skeptical look at justification. Cladistics 21:203–207. doi: 10.1111/j.1096-0031.2005.00057.x (Letter to the Editor)CrossRefGoogle Scholar
  49. Rokas A (2001) Getting it right for the wrong reason. Trends Ecol Evol 16(12):668. doi: 10.1016/S0169-5347(01)02376-X CrossRefGoogle Scholar
  50. Salmon W (1990) Four decades of scientific explanation. Pittsburgh University Press, PittsburghGoogle Scholar
  51. Siddall ME (1998) Success of parsimony in the four-taxon case: long-branch repulsion by likelihood in the Farris zone. Cladistics 14:209–220. doi: 10.1111/j.1096-0031.1998.tb00334.x CrossRefGoogle Scholar
  52. Siddall ME (2001) Philosphy and phylogenetic inference: a comparison of likelihood and parsimony methods in the context of Karl Popper’s writings on corroboration. Cladistics 15:17 (Letter to the Editor)Google Scholar
  53. Siddall ME, Kluge AG (1997) Probabilism and phylogenetic inference. Cladistics 13:313–336. doi: 10.1111/j.1096-0031.1997.tb00322.x CrossRefGoogle Scholar
  54. Siddall ME, Whiting MF (1999) Long-branch abstractions. Cladistics 15:9–24. doi: 10.1111/j.1096-0031.1999.tb00391.x CrossRefGoogle Scholar
  55. Simon H (1997) Models of bounded rationality. The MIT Press, CambridgeGoogle Scholar
  56. Sober E (1988) Reconstructing the past: parsimony, evolution and inference. The MIT Press, CambridgeGoogle Scholar
  57. Sober E (2004) The contest between parsimony and likelihood. Syst Biol 53(4):644–653. doi: 10.1080/10635150490468657 CrossRefGoogle Scholar
  58. Sober E (2008) Evidence and evolution. The logic behind the science. Cambridge University Press, CambridgeGoogle Scholar
  59. Wang X (2002) Taxonomy, truth-value gaps and incommensurability: a reconstruction of Kuhn’s taxonomic interpretation of incommensurability. Stud Hist Philos Sci 33:465–485. doi: 10.1016/S0039-3681(01)00039-5 CrossRefGoogle Scholar
  60. Wimsatt WC (1972) Teleology and the logical structure of function statements. Stud Hist Philos Sci 3:1–80. doi: 10.1016/0039-3681(72)90014-3 CrossRefGoogle Scholar
  61. Winther RG (2001) Varieties of modules: kinds, levels, origins, and behaviors. J Exp Zool 291:116–129. doi: 10.1002/jez.1064 CrossRefGoogle Scholar
  62. Winther RG (2003) Formal biology and compositional biology as two kinds of biological theorizing. Dissertation, History and Philosophy of Science Department, Indiana UniversityGoogle Scholar
  63. Winther RG (2006) Parts and theories in compositional biology. Biol Philos 21:471–499. doi: 10.1007/s10539-005-9002-x CrossRefGoogle Scholar
  64. Winther RG (2009a) Teorías, Prácticas y Estilos de Investigación Científica. In: Martínez S, Huang X, Guillaumin G (eds) Filosofía de las prácticas científicas. Hacia una filosofía de la ciencia no centrada en teorías. Universidad Autónoma Metropolitana, México (accepted)Google Scholar
  65. Winther RG (2009b) Character analysis in cladistics: abstraction, reification, and the search for objectivity. Acta Biotheor. doi: 10.1007/s10441-008-9064-7 Google Scholar
  66. Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci USA 97(15):8392–8396. doi: 10.1073/pnas.97.15.8392 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Graduate Program in Philosophy of Science, Instituto de Investigaciones FilosóficasUNAMMexico CityMexico

Personalised recommendations