Acta Biotheoretica

, Volume 57, Issue 3, pp 321–330 | Cite as

Prediction of Subcellular Localization of Apoptosis Protein Using Chou’s Pseudo Amino Acid Composition

  • Hao LinEmail author
  • Hao Wang
  • Hui Ding
  • Ying-Li Chen
  • Qian-Zhong Li
Regular Article


Apoptosis proteins play an essential role in regulating a balance between cell proliferation and death. The successful prediction of subcellular localization of apoptosis proteins directly from primary sequence is much benefited to understand programmed cell death and drug discovery. In this paper, by use of Chou’s pseudo amino acid composition (PseAAC), a total of 317 apoptosis proteins are predicted by support vector machine (SVM). The jackknife cross-validation is applied to test predictive capability of proposed method. The predictive results show that overall prediction accuracy is 91.1% which is higher than previous methods. Furthermore, another dataset containing 98 apoptosis proteins is examined by proposed method. The overall predicted successful rate is 92.9%.


Apoptosis protein Subcellular localization Pseudo amino acid composition Support vector machine 



This study was supported in part by Scientific Research Startup Foundation of UESTC and National Natural Science Foundation of China (30560039).


  1. Adams JM, Cory S (1998) The Bcl-survival. Science 281:1322–1326. doi: 10.1126/science.281.5381.1322 CrossRefGoogle Scholar
  2. Bulashevska A, Eils R (2006) Predicting protein subcellular locations using hierarchical ensemble of Bayesian classifiers based on Markov chains. BMC Bioinformatics 7:298. doi: 10.1186/1471-2105-7-298 CrossRefGoogle Scholar
  3. Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines. Software available at (
  4. Chen YL, Li QZ (2007a) Prediction of the subcellular location of apoptosis proteins. J Theor Biol 245:775–783. doi: 10.1016/j.jtbi.2006.11.010 CrossRefGoogle Scholar
  5. Chen YL, Li QZ (2007b) Prediction of apoptosis proteins subcellular location using improved hybrid approach and pseudo-amino acid composition. J Theor Biol 248:377–381. doi: 10.1016/j.jtbi.2007.05.019 CrossRefGoogle Scholar
  6. Chou KC (1988) Review: low-frequency collective motion in biomacromolecules and its biological functions. Biophys Chem 30:3–48. doi: 10.1016/0301-4622(88)85002-6 CrossRefGoogle Scholar
  7. Chou KC (1992) Energy-optimized structure of antifreeze protein and its binding mechanism. J Mol Biol 223:509–517. doi: 10.1016/0022-2836(92)90666-8 CrossRefGoogle Scholar
  8. Chou KC (1999) A key driving force in determination of protein structural classes. Biochem Biophys Res Commun 264:216–224. doi: 10.1006/bbrc.1999.1325 CrossRefGoogle Scholar
  9. Chou KC (2001) Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins 43:246–255. doi: 10.1002/prot.1035 CrossRefGoogle Scholar
  10. Chou KC (2004) Review: structural bioinformatics and its impact to biomedical science. Curr Med Chem 11:2105–2134Google Scholar
  11. Chou KC (2005) Prediction of G-protein-coupled receptor classes. J Proteome Res 4:1413–1418. doi: 10.1021/pr050087t CrossRefGoogle Scholar
  12. Chou KC, Shen HB (2007a) Recent progress in protein subcellular location prediction. Anal Biochem 370:1–16. doi: 10.1016/j.ab.2007.07.006 CrossRefGoogle Scholar
  13. Chou KC, Shen HB (2007b) MemType-2L: a web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM. Biochem Biophys Res Commun 360:339–345. doi: 10.1016/j.bbrc.2007.06.027 CrossRefGoogle Scholar
  14. Chou KC, Shen HB (2007c) Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides. Biochem Biophys Res Commun 357:633–640. doi: 10.1016/j.bbrc.2007.03.162 CrossRefGoogle Scholar
  15. Chou KC, Shen HB (2008a) Cell-Ploc: a package of web servers for predicting subcellular localization of proteins in various organisms. Nat Protocols 3:153–162. doi: 10.1038/nprot.2007.494 CrossRefGoogle Scholar
  16. Chou KC, Shen HB (2008b) ProtIdent: a web server for identifying proteases and their types by fusing functional domain and sequential evolution information. Biochem Biophys Res Commun 376(2):321–325. doi: 10.1016/j.bbrc.2008.1008.1125 CrossRefGoogle Scholar
  17. Chou KC, Zhang CT (1995) Review: prediction of protein structural classes. Crit Rev Biochem Mol Biol 30:275–349. doi: 10.3109/10409239509083488 CrossRefGoogle Scholar
  18. Chou KC, Zhou GP (1982) Role of the protein outside active site on the diffusion-controlled reaction of enzyme. J Am Chem Soc 104:1409–1413. doi: 10.1021/ja00369a043 CrossRefGoogle Scholar
  19. Chou KC, Nemethy G, Scheraga HA (1984) Energetic approach to packing of a-helices: 2. General treatment of nonequivalent and nonregular helices. J Am Chem Soc 106:3161–3170. doi: 10.1021/ja00323a017 CrossRefGoogle Scholar
  20. Chou KC, Maggiora GM, Nemethy G, Scheraga HA (1988) Energetics of the structure of the four-alpha-helix bundle in proteins. Proc Natl Acad Sci USA 85:4295–4299. doi: 10.1073/pnas.85.12.4295 CrossRefGoogle Scholar
  21. Chou KC, Jones D, Heinrikson RL (1997) Prediction of the tertiary structure and substrate binding site of caspase-8. FEBS Lett 419:49–54. doi: 10.1016/S0014-5793(97)01246-5 CrossRefGoogle Scholar
  22. Chou JJ, Matsuo H, Duan H, Wagner G (1998) Solution structure of the RAIDD CARD and model for CARD/CARD interaction in caspase-2 and caspase-9 recruitment. Cell 94:171–180. doi: 10.1016/S0092-8674(00)81417-8 CrossRefGoogle Scholar
  23. Chou JJ, Li H, Salvessen GS, Yuan J, Wagner G (1999) Solution structure of BID, an intracellular amplifier of apoptotic signalling. Cell 96:615–624. doi: 10.1016/S0092-8674(00)80572-3 CrossRefGoogle Scholar
  24. Chou KC, Tomasselli AG, Heinrikson RL (2000) Prediction of the tertiary structure of a caspase-9/inhibitor complex. FEBS Lett 470:249–256. doi: 10.1016/S0014-5793(00)01333-8 CrossRefGoogle Scholar
  25. Chou KC, Wei DQ, Zhong WZ (2003) Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. (Erratum: ibid., 2003, Vol.310, 675). Biochem Biophys Res Commun 308:148–151CrossRefGoogle Scholar
  26. Chou KC, Wei DQ, Du QS, Sirois S, Zhong WZ (2006) Review: progress in computational approach to drug development against SARS. Curr Med Chem 13:3263–3270. doi: 10.2174/092986706778773077 CrossRefGoogle Scholar
  27. Ding YS, Zhang TL (2008) Using Chou’s pseudo amino acid composition to predict subcellular localization of apoptosis proteins: an approach with immune genetic algorithm-based ensemble classifier. Pattern Recognit Lett 29:1887–1892. doi: 10.1016/j.patrec.2008.06.007 CrossRefGoogle Scholar
  28. Du QS, Huang RB, Chou KC (2008) Review: recent advances in QSAR and their applications in predicting the activities of chemical molecules, peptides and proteins for drug design. Curr Protein Pept Sci 9:248–259. doi: 10.2174/138920308784534005 CrossRefGoogle Scholar
  29. Evan G, Littlewood T (1998) A matter of life and cell death. Science 281:1317–1322. doi: 10.1126/science.281.5381.1317 CrossRefGoogle Scholar
  30. Gao QB, Wu CH, Ma XQ, Lu J, He J (2008) Classification of amine type G-protein coupled receptors with feature selection. Protein Pept Lett 15:834–842. doi: 10.2174/092986608785203755 CrossRefGoogle Scholar
  31. Huang J, Shi F (2005) Support vector machines for predicting apoptosis proteins types. Acta Biotheor 53:39–47. doi: 10.1007/s10441-005-7002-5 CrossRefGoogle Scholar
  32. Jia P, Qian Z, Feng K, Lu W, Li Y, Cai Y (2008) Prediction of membrane protein types in a hybrid space. J Proteome Res 7:1131–1137. doi: 10.1021/pr700715c CrossRefGoogle Scholar
  33. Jiang X, Wei R, Zhang T, Gu Q (2008) Using the concept of Chou’s pseudo amino acid composition to predict apoptosis proteins subcellular location: an approach by approximate entropy. Protein Pept Lett 15:392–396. doi: 10.2174/092986608784246443 CrossRefGoogle Scholar
  34. Jin YH, Niu B, Feng KY, Lu WC, Cai YD, Li GZ (2008) Predicting subcellular localization with AdaBoost Learner. Protein Pept Lett 15:286–289. doi: 10.2174/092986608783744234 CrossRefGoogle Scholar
  35. Li FM, Li QZ (2008a) Using pseudo amino acid composition to predict protein subnuclear location with improved hybrid approach. Amino Acids 34:119–125. doi: 10.1007/s00726-007-0545-9 CrossRefGoogle Scholar
  36. Li FM, Li QZ (2008b) Predicting protein subcellular location using Chou’s pseudo amino acid composition and improved hybrid approach. Protein Pept Lett 15:612–616. doi: 10.2174/092986608784966930 CrossRefGoogle Scholar
  37. Li Y, Wei DQ, Gao WN, Gao H, Liu BN, Huang CJ, Xu WR, Liu DK, Chen HF, Chou KC (2007) Computational approach to drug design for oxazolidinones as antibacterial agents. Med Chem 3:576–582. doi: 10.2174/157340607782360362 CrossRefGoogle Scholar
  38. Lin H (2008) The modified Mahalanobis discriminant for predicting outer membrane proteins by using Chou’s pseudo amino acid composition. J Theor Biol 252:350–356. doi: 10.1016/j.jtbi.2008.02.004 CrossRefGoogle Scholar
  39. Lin H, Li QZ (2007a) Using pseudo amino acid composition to predict protein structural class: approached by incorporating 400 dipeptide components. J Comput Chem 28:1463–1466. doi: 10.1002/jcc.20554 CrossRefGoogle Scholar
  40. Lin H, Li QZ (2007b) Predicting conotoxin superfamily and family by using pseudo amino acid composition and modified Mahalanobis discriminant. Biochem Biophys Res Commun 354:548–551. doi: 10.1016/j.bbrc.2007.01.011 CrossRefGoogle Scholar
  41. Lin H, Ding H, Guo FB, Zhang AY, Huang J (2008) Predicting subcellular localization of mycobacterial proteins by using Chou’s pseudo amino acid composition. Protein Pept Lett 15:739–744. doi: 10.2174/092986608785133681 CrossRefGoogle Scholar
  42. Munteanu CB, Gonzalez-Diaz H, Magalhaes AL (2008) Enzymes/non-enzymes classification model complexity based on composition, sequence, 3D and topological indices. J Theor Biol 254:476–482. doi: 10.1016/j.jtbi.2008.06.003 CrossRefGoogle Scholar
  43. Niu B, Jin YH, Feng KY, Liu L, Lu WC, Cai YD, Li GZ (2008) Predicting membrane protein types with bagging learner. Protein Pept Lett 15:590–594. doi: 10.2174/092986608784966921 CrossRefGoogle Scholar
  44. Raff M (1998) Cell suicide for beginners. Nature 396:119–122. doi: 10.1038/24055 CrossRefGoogle Scholar
  45. Reed JC, Paternostro G (1999) Postmitochondrial regulation of apoptosis during heart failure. Proc Natl Acad Sci USA 96:7614–7616. doi: 10.1073/pnas.96.14.7614 CrossRefGoogle Scholar
  46. Schulz JB, Weller M, Moskowitz MA (1999) Caspases as treatment targets in stroke and neurodegenerative diseases. Ann Neurol 45:421–429. doi: 10.1002/1531-8249(199904)45:4<421::AID-ANA2>3.0.CO;2-Q CrossRefGoogle Scholar
  47. Shen HB, Chou KC (2007) EzyPred: a top-down approach for predicting enzyme functional classes and subclasses. Biochem Biophys Res Commun 364:53–59. doi: 10.1016/j.bbrc.2007.09.098 CrossRefGoogle Scholar
  48. Shen HB, Chou KC (2008a) PseAAC: a flexible web server for generating various kinds of protein pseudo amino acid composition. Anal Biochem 373:386–388. doi: 10.1016/j.ab.2007.10.012 CrossRefGoogle Scholar
  49. Shen HB, Chou KC (2008b) HIVcleave: a web-server for predicting HIV protease cleavage sites in proteins. Anal Biochem 375:388–390. doi: 10.1016/j.ab.2008.01.012 CrossRefGoogle Scholar
  50. Shi F, Chen QJ, Li NN (2008) Hilbert Huang transform for predicting proteins subcellular location. J. Biomed Sci Eng 1:59–63CrossRefGoogle Scholar
  51. Sirois S, Wei DQ, Du QS, Chou KC (2004) Virtual screening for SARS-CoV protease based on KZ7088 pharmacophore points. J Chem Inf Comput Sci 44:1111–1122. doi: 10.1021/ci034270n Google Scholar
  52. Steller H (1995) Mechanisms and genes of cellular suicide. Science 267:1445–1449. doi: 10.1126/science.7878463 CrossRefGoogle Scholar
  53. Suzuki M, Youle RJ, Tjandra N (2000) Structure of Bax: coregulation of dimmer formation and intracellular location. Cell 103:645–654. doi: 10.1016/S0092-8674(00)00167-7 CrossRefGoogle Scholar
  54. Vapnik V (1998) Statistical learning theory. Wiley-Interscience, New YorkGoogle Scholar
  55. Wang JF, Wei DQ, Chen C, Li Y, Chou KC (2008) Molecular modeling of two CYP2C19 SNPs and its implications for personalized drug design. Protein Pept Lett 15:27–32. doi: 10.2174/092986608783330305 CrossRefGoogle Scholar
  56. Zhang GY, Fang BS (2008) Predicting the cofactors of oxidoreductases based on amino acid composition distribution and Chou’s amphiphilic pseudo amino acid composition. J Theor Biol 253:310–315. doi: 10.1016/j.jtbi.2008.03.015 CrossRefGoogle Scholar
  57. Zhang ZH, Wang ZH, Zhang ZR, Wang YX (2006) A novel method for apoptosis protein subcellular localization prediction combining encoding based on grouped weight and support vector machine. FEBS Lett 580:6169–6174. doi: 10.1016/j.febslet.2006.10.017 CrossRefGoogle Scholar
  58. Zheng H, Wei DQ, Zhang R, Wang C, Wei H, Chou KC (2007) Screening for new agonists against Alzheimer’s disease. Med Chem 3:488–493. doi: 10.2174/157340607781745492 CrossRefGoogle Scholar
  59. Zhou GP, Doctor K (2003) Subcellular location prediction of apoptosis proteins. Proteins 50:44–48. doi: 10.1002/prot.10251 CrossRefGoogle Scholar
  60. Zhou XB, Chen C, Li ZC, Zou XY (2008) Improved prediction of subcellular location for apoptosis proteins by the dual-layer support vector machine. Amino Acids 35:383–388. doi: 10.1007/s00726-007-0608-y CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Hao Lin
    • 1
    Email author
  • Hao Wang
    • 1
  • Hui Ding
    • 2
  • Ying-Li Chen
    • 2
  • Qian-Zhong Li
    • 2
  1. 1.Center for Bioinformatics, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Laboratory of Theoretical Biophysics, School of Physics Sciences and TechnologyInner Mongolia UniversityHohhotChina

Personalised recommendations