Acta Biotheoretica

, Volume 57, Issue 1–2, pp 129–162 | Cite as

Character Analysis in Cladistics: Abstraction, Reification, and the Search for Objectivity

  • Rasmus Grønfeldt WintherEmail author
Regular Article


The dangers of character reification for cladistic inference are explored. The identification and analysis of characters always involves theory-laden abstraction—there is no theory-free “view from nowhere.” Given theory-ladenness, and given a real world with actual objects and processes, how can we separate robustly real biological characters from uncritically reified characters? One way to avoid reification is through the employment of objectivity criteria that give us good methods for identifying robust primary homology statements. I identify six such criteria and explore each with examples. Ultimately, it is important to minimize character reification, because poor character analysis leads to dismal cladograms, even when proper phylogenetic analysis is employed. Given the deep and systemic problems associated with character reification, it is ironic that philosophers have focused almost entirely on phylogenetic analysis and neglected character analysis.


Characters Cladistics Phylogenetics Morphology Abstraction Reification Biological theory Epistemology Causation 



This paper emerged from multiple conversations with Olivier Rieppel. I am also grateful to Niels Bonde, Kirk Fitzhugh, David Hull, Fabrizzio McManus Guerrero, Brent Mishler, Elliot Sober, Peter Stevens, Francisco Vergara-Silva, and David M Williams for discussion and comments on an earlier draft. Springer Science and Business Media (Fig. 1), John Wiley & Sons, Inc. (Figs. 2 and 3), and University of Chicago Press (Fig. 4) kindly granted permission to reproduce original material.


  1. Beatty J (1982) Classes and cladists. Syst Zool 31:25–34. doi: 10.2307/2413411 CrossRefGoogle Scholar
  2. Bonde N (1977) Cladistic classification as applied to vertebrates. In: Hecht MK, Goodbody PC, Hecht BM (eds) Major patterns in vertebrate evolution. Plenum Press, New York, pp 741–804Google Scholar
  3. Bonde N (1996) “Moderne systematik—fylogeni og klassifikation”. In: Bonde N, Hoffmeyer J (eds) Naturens historiefortællere, vol 2, 2nd edn. Udviklingsideens historie, Copenhagen, 127–181Google Scholar
  4. Boyd R (1999) Homeostasis, species, and higher taxa. In: Wilson RA (ed) Species. New interdisciplinary essays. MIT Press, Cambridge, pp 141–185Google Scholar
  5. Brady RH (1985) On the independence of systematics. Cladistics 1:113–126CrossRefGoogle Scholar
  6. Bremer B, Jansen RK, Oxelman B, Backlund M, Lantz H, Kim K-J (1999) More characters or more taxa for a robust phylogeny. Case study from the coffee family (Rubiaceae). Syst Biol 48:413–435Google Scholar
  7. Brigandt I, Griffiths PE (2007) The importance of homology for biology and philosophy (Editors’ introduction to the special issue). Biol Philos 22:633–641. doi: 10.1007/s10539-007-9094-6 CrossRefGoogle Scholar
  8. Brooks DR (1996) Explanations of homoplasy at different levels of biological organization. In: Sanderson MJ, Hufford L (eds) Homoplasy. The recurrence of similarity in evolution. Academic Press, San Diego, pp 3–36Google Scholar
  9. Brower AVZ, Schawaroch V (1996) Three steps of homology assessment. Cladistics 12:265–272Google Scholar
  10. Brusca RC, Brusca GJ (2003) Invertebrates, 2nd edn. Sinauer Associates, SunderlandGoogle Scholar
  11. Bryant HN (1989) An evaluation of cladistic and character analyses as hypothetico-deductive procedures, and the consequences for character weighting. Syst Zool 38:214–227. doi: 10.2307/2992283 CrossRefGoogle Scholar
  12. Cartwright N (1989) Nature’s capacities and their measurement. Oxford University Press, OxfordGoogle Scholar
  13. Colless DH (1985) On “character” and related terms. Syst Zool 34:229–233. doi: 10.2307/2413331 CrossRefGoogle Scholar
  14. Craver C (2007) Explaining the brain. Mechanisms and the mosaic unity of neuroscience. Oxford University Press, New YorkGoogle Scholar
  15. Darwin CR (1854) A monograph on the sub-class Cirripedia, with figures of all species. The Balanidae, (or sessile cirripedes); the Verrucidae, etc., etc., etc.: 1–684 + pls, vol 2. Ray Society, London, pp 1–30Google Scholar
  16. Darwin CR (1859/2001) On the origin of species by means of natural selection or the preservation of favoured races in the struggle for life. Harvard University Press, CambridgeGoogle Scholar
  17. De Pinna MCC (1991) Concepts and tests of homology in the cladistic paradigm. Cladistics 7:367–394. doi: 10.1111/j.1096-0031.1991.tb00045.x CrossRefGoogle Scholar
  18. De Queiroz A, Donoghue MJ, Kim J (1995) Separate versus combined analysis of phylogenetic evidence. Annu Rev Ecol Syst 26:657–681. doi: 10.1146/ CrossRefGoogle Scholar
  19. De Queiroz K (1985) The ontogenetic method for determining character polarity and its relevance to phylogenetic systematics. Syst Zool 34:280–299. doi: 10.2307/2413148 CrossRefGoogle Scholar
  20. Devitt M (1991) Realism and truth. Basil Blackwell, OxfordGoogle Scholar
  21. Doolittle WF, Bapteste E (2007) Pattern pluralism and the tree of life hypothesis. Proc Natl Acad Sci USA 104:2043–2049. doi: 10.1073/pnas.0610699104 CrossRefGoogle Scholar
  22. Dupré J (2002) Is ‘natural kind’ a natural kind term? Monist 85:29–49Google Scholar
  23. Eldredge N, Cracraft J (1980) Phylogenetic patterns and the evolutionary process. Method and theory in comparative biology. Columbia University Press, New YorkGoogle Scholar
  24. Ereshefsky M (2001) The poverty of the Linnean hierarchy. A philosophical study of biological taxonomy. Cambridge University Press, CambridgeGoogle Scholar
  25. Farris J, Kluge AG (1979) A botanical clique. Syst Zool 28:400–411. doi: 10.2307/2412596 CrossRefGoogle Scholar
  26. Felsenstein J (1982) Numerical methods for inferring evolutionary trees. Q Rev Biol 57:379–404. doi: 10.1086/412935 CrossRefGoogle Scholar
  27. Felsenstein J (2003) Inferring phylogenies. Sinauer Press, SunderlandGoogle Scholar
  28. Fitch WM (1970) Distinguishing homologous from analogous proteins. Syst Zool 19:99–113. doi: 10.2307/2412448 CrossRefGoogle Scholar
  29. Fitzhugh K (2006) The philosophical basis of character coding for the inference of phylogenetic hypotheses. Zool Scr 35:261–286. doi: 10.1111/j.1463-6409.2006.00229.x CrossRefGoogle Scholar
  30. Fitzhugh K (2008) Clarifying the role of character loss in phylogenetic inference. Zool Scr 37:561–569. doi: 10.1111/j.1463-6409.2008.00338.x CrossRefGoogle Scholar
  31. Freudenstein JV (2005) Characters, states and homology. Syst Biol 54:965–973. doi: 10.1080/10635150500354654 CrossRefGoogle Scholar
  32. Friedman M (1999) The dynamics of reason. CSLI Publications, StanfordGoogle Scholar
  33. Fristrup K (1992) Character. Current usages. In: Keller EF, Lloyd EA (eds) Keywords in evolutionary biology. Harvard University Press, Cambridge, pp 45–51Google Scholar
  34. Fristrup K (2001) A history of character concepts in evolutionary biology. In: Wagner GP (ed) The character concept in evolutionary biology. Academic Press, San Diego, pp 13–35CrossRefGoogle Scholar
  35. Ghiselin M (1984) ‘Definition’, ‘character’, and other equivocal terms. Syst Zool 33:104–110. doi: 10.2307/2413135 CrossRefGoogle Scholar
  36. Glennan S (2002) Rethinking mechanistic explanation. Philos Sci 69:S342–S353. doi: 10.1086/341857 CrossRefGoogle Scholar
  37. Goodman N (1978) Ways of worldmaking. Harvester Press Limited, HassocksGoogle Scholar
  38. Grant T, Kluge AG (2004) Transformation series as an ideographic character concept. Cladistics 20:23–31. doi: 10.1111/j.1096-0031.2004.00003.x CrossRefGoogle Scholar
  39. Hacking I (2007) Natural kinds: Rosy Dawn, Scholastic Twilight. R Inst Philos Suppl 61:203–240Google Scholar
  40. Harding S (1995) ‘Strong Objectivity’: a response to the new objectivity question. Synthese 104:331–349. doi: 10.1007/BF01064504 CrossRefGoogle Scholar
  41. Härlin M (1999) The logical priority of the tree over characters and some of its consequences for taxonomy. Biol J Linn Soc Lond 68:497–503. doi: 10.1111/j.1095-8312.1999.tb01185.x CrossRefGoogle Scholar
  42. Hawkins JA (2000) A survey of primary homology assessment: different botanists perceive and define characters in different ways. In: Scotland R, Pennington RT (eds) Homology and systematics. Coding characters for phylogenetic analysis. Taylor and Francis, London, pp 22–53Google Scholar
  43. Hawkins JA, Hughes CE, Scotland RW (1997) Primary homology assessment, characters and character states. Cladistics 13:275–283. doi: 10.1111/j.1096-0031.1997.tb00320.x CrossRefGoogle Scholar
  44. Hennig W (1950) Gründzuge einer Theorie der Phylogenetischen Systematik. Deutscher Zentralverlag, BerlinGoogle Scholar
  45. Hennig W (1966) Phylogenetic systematics. University of llinois Press, UrbanaGoogle Scholar
  46. Hillis DM, Wiens JJ (2000) Molecules versus morphology in systematics. In: Wiens JJ (ed) Phylogenetic analyses of morphological data. Smithsonian Institution Press, Washington, DC, pp 1–19Google Scholar
  47. Hillis DM, Huelsenbeck JP, Cunningham CW (1994) Application and accuracy of molecular phylogenies. Science 264:671–677. doi: 10.1126/science.8171318 CrossRefGoogle Scholar
  48. Hillis DM, Moritz C, Mable BK (1996) Molecular systematics, 2nd edn. Sinauer Associates, Sunderland.Google Scholar
  49. Hull D (1988) Science as a process. An evolutionary account of the social and conceptual development of science. University of Chicago Press, ChicagoGoogle Scholar
  50. Jardine N (1967) The concept of homology in biology. Br J Philos Sci 18:125–139. doi: 10.1093/bjps/18.2.125 CrossRefGoogle Scholar
  51. Jardine N (1969) The observational and theoretical components of homology: A study based on the morphology of the dermal skull-roofs of rhipidistian fishes. Biol J Linn Soc Lond 1:327–361. doi: 10.1111/j.1095-8312.1969.tb00125.x CrossRefGoogle Scholar
  52. Jones MR (2005) Idealization and abstraction: a framework. In: Jones MR, Cartwright N (eds) Idealization XII: correcting the model. Idealization and abstraction in the sciences (Poznan studies in the philosophy of the sciences and the humanities, vol 86). Rodopi, Amsterdam, pp 173–217Google Scholar
  53. Kearney M, Rieppel O (2006) Rejecting ‘the given’ in systematics. Cladistics 22:369–377. doi: 10.1111/j.1096-0031.2006.00110.x CrossRefGoogle Scholar
  54. Khalidi MA (1998) Natural kinds and crosscutting categories. J Philos 95:33–50. doi: 10.2307/2564567 CrossRefGoogle Scholar
  55. Kluge AG (1989) A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidea, Serpentes). Syst Zool 38:7–25. doi: 10.2307/2992432 CrossRefGoogle Scholar
  56. Kuhn T (1970) The structure of scientific revolutions, 2nd edn. University of Chicago Press, ChicagoGoogle Scholar
  57. Kusch M (2002) Knowledge by agreement. The programme of communitarian epistemology. Oxford University Press, OxfordGoogle Scholar
  58. Lecointre G, Deleporte P (2005) Total evidence requires exclusion of phylogenetically misleading data. Zool Scr 34:101–117. doi: 10.1111/j.1463-6409.2005.00168.x CrossRefGoogle Scholar
  59. Leonelli S (2008) Growing weed, producing knowledge. An epistemological history of Arabidopsis thaliana. Hist Philos Life Sci 29:55–87Google Scholar
  60. Levins R (1966) The strategy of model building in population biology. Am Sci 54:421–431Google Scholar
  61. Levins R (2006) Strategies of abstraction. Biol Philos 21:741–755. doi: 10.1007/s10539-006-9052-8 CrossRefGoogle Scholar
  62. Levins R, Lewontin R (1985) The dialectical biologist. Harvard University Press, CambridgeGoogle Scholar
  63. Lewontin RC (2001) Foreword. In: Wagner GP (ed) The character concept in evolutionary biology. Academic Press, San Diego, pp xvii–xxiiiCrossRefGoogle Scholar
  64. Lewontin R, Levins R (2007) Biology under the influence. Dialectical essays on ecology, agriculture, and health. Monthly Review Press, New YorkGoogle Scholar
  65. Lloyd EA (1988) The structure and confirmation of evolutionary theory. Princeton University Press, PrincetonGoogle Scholar
  66. Lloyd EA (1995) Objectivity and the double standard for feminist epistemologies. Synthese 104:351–381. doi: 10.1007/BF01064505 CrossRefGoogle Scholar
  67. Lloyd EA (1996) Science and anti-science: objectivity and its real enemies. In: Nelson LH, Nelson J (eds) Feminism, science and the philosophy of science. Kluwer, Dordrecht, pp 217–259Google Scholar
  68. Longino H (1995) Gender, politics, and the theoretical virtues. Synthese 104:383–397. doi: 10.1007/BF01064506 CrossRefGoogle Scholar
  69. Longino H (2002) The fate of knowledge. Princeton University Press, PrincetonGoogle Scholar
  70. Love AC Typology reconfigured: from the metaphysics of essentialism to the epistemology of representation. Acta Biotheor (This issue)Google Scholar
  71. McManus Guerrero F (2006) Desacuerdos racionales, selección de modelos y sistemática filogenética. Masters Thesis, (Universidad Nacional Autónoma de México, México DF)Google Scholar
  72. McManus Guerrero F Rational disagreements in phylogenetics (This Issue)Google Scholar
  73. Mindell DP (1991) Similarity and congruence as criteria for molecular homology. Mol Biol Evol 8:897–900Google Scholar
  74. Mishler BD (2005) The logic of the data matrix in phlogenetic analysis. In: Albert VA (ed) Parsimony, phylogeny, and genomics. Oxford University Press, Oxford, pp 57–70Google Scholar
  75. Neff NA (1986) A rational basis for a priori character weighting. Syst Zool 35:110–123. doi: 10.2307/2413295 CrossRefGoogle Scholar
  76. Nelson G (1978) Ontogeny, phylogeny, paleontology, and the biogenetic law. Syst Zool 27:324–345. doi: 10.2307/2412883 CrossRefGoogle Scholar
  77. Nelson G, Platnick N (1981) Systematics and biogeography. Columbia University Press, New YorkGoogle Scholar
  78. Newman WA, Ross A (1976) Revision of the balanomorph barnacles; including a catalogue of the species. Mem San Diego Soc Nat Hist 9:1–108Google Scholar
  79. Nixon KC, Carpenter JM (1993) On outgroups. Cladistics 9:413–426. doi: 10.1111/j.1096-0031.1993.tb00234.x CrossRefGoogle Scholar
  80. Okasha S (2007) Evolution and the levels of selection. Oxford University Press, OxfordGoogle Scholar
  81. O’Malley M, Dupré J (2007) Size doesn’t matter: towards a more inclusive philosophy of biology. Biol Philos 22:155–191. doi: 10.1007/s10539-006-9031-0 CrossRefGoogle Scholar
  82. Patterson C (1981) The goals, uses, and assumptions of cladistic analysis. Talk given at the second annual meeting of the Willi Hennig society, Ann ArborGoogle Scholar
  83. Patterson C (1982) Morphological characters and homology. In: Joysey KA, Friday AE (eds) Problems in phylogenetic reconstruction. Academic Press, London, pp 21–74Google Scholar
  84. Patterson C (1988) Homology in classical and molecular biology. Mol Biol Evol 5:603–625Google Scholar
  85. Patterson C, Williams DM, Humpries CJ (1993) Congruence between molecular and morphological phylogenies. Annu Rev Ecol Syst 24:153–188CrossRefGoogle Scholar
  86. Pimentel RA, Riggins R (1987) The nature of cladistic data. Cladistics 3:201–209CrossRefGoogle Scholar
  87. Platnick NI (1977) Cladograms, phylogenetic trees, and hypothesis testing. Syst Zool 26:438–442. doi: 10.2307/2412799 CrossRefGoogle Scholar
  88. Pleijel F (1995) On character coding for phylogeny reconstruction. Cladistics 11:309–315. doi: 10.1016/0748-3007(95)90018-7 CrossRefGoogle Scholar
  89. Poe S, Wiens JJ (2000) Character selection and the methodology of morphological phylogenetics. In: Wiens JJ (ed) Phylogenetic analysis of morphological data. Smithsonian Institution Press, Washington DC, pp 20–36Google Scholar
  90. Popper K (1963) Conjectures and refutations: the growth of scientific knowledge. Routledge, LondonGoogle Scholar
  91. Putnam H (1996 (1975)) The meaning of ‘meaning. In: Pessin A, Goldberg S (eds) The Twin Earth Chronicles. Twenty Years of Reflection on Hilary Putnam’s “The Meaning of ‘Meaning”, Armonk, M.E. Sharpe, pp 3–52Google Scholar
  92. Putnam H (1981) Reason, truth and history. Cambridge University Press, CambridgeGoogle Scholar
  93. Quine WV (1977/1969) Natural kinds. In: Schwartz SP (ed) Naming, necessity and natural kinds, Cornell University Press, Ithaca, pp 155–175Google Scholar
  94. Radinsky LB (1987) The evolution of vertebrate design. University of Chicago Press, ChicagoGoogle Scholar
  95. Remane A (1952) Die Grundlagen Des Natürlichen Systems, der Vergleichenden Anatomie und der Phylogenetic. Theoretische Morphologie und Systematik. 2nd edn 1956. Akademische Verlagsgesellschaft, Geest und Portig, K.-G. LeipzigGoogle Scholar
  96. Richards R (2002) Kuhnian values and cladistic parsimony. Perspect Sci 10:1–27. doi: 10.1162/106361402762674780 CrossRefGoogle Scholar
  97. Richards R (2003) Character individuation in phylogenetic inference. Philos Sci 70:264–279. doi: 10.1086/375467 CrossRefGoogle Scholar
  98. Richter S (2005) Homologies in phylogenetic analyses–concepts and tests. Theory Biosci 124:105–120Google Scholar
  99. Riedl R (1978) Order in living organisms: a systems analysis of evolution. Wiley, Chichester (trans. 1975. Die Ordnung Des Lebendigen. München: Paul Parey.)Google Scholar
  100. Rieppel O (1988) Fundamentals of comparative biology. Birkhauser Verlag AG, BaselGoogle Scholar
  101. Rieppel O (1994) Homology, topology, and typology: the history of modern debates. In: Hall BK (ed) Homology. The hierarchical basis of comparative biology. Academic Press, San Diego, pp 63–100Google Scholar
  102. Rieppel O (2004) The language of systematics, and the philosophy of ‘total evidence’. Syst Biodivers 2:9–19. doi: 10.1017/S147720000400132X CrossRefGoogle Scholar
  103. Rieppel O (2005) Modules, kinds, and homology. J Exp Zool (Mol Dev Evol) 304B:18–27. doi: 10.1002/jez.b.21025 CrossRefGoogle Scholar
  104. Rieppel O (2006a) Willi Hennig on transformation series: metaphysics and epistemology. Taxon 55:377–385Google Scholar
  105. Rieppel O (2006b) The merits of similarity reconsidered. Syst Biodivers 4:137–147. doi: 10.1017/S1477200005001830 CrossRefGoogle Scholar
  106. Rieppel O (2008a) Origins, taxa, names and meanings. Cladistics 24:598–610. doi: 10.1111/j.1096-0031.2007.00195.x CrossRefGoogle Scholar
  107. Rieppel O (2008) ‘Total evidence’ in phylogenetic systematics. Biol Philos (accepted)Google Scholar
  108. Rieppel O Species, monophyly, cladistics, phylogeography, metaphysics. Synthese (submitted)Google Scholar
  109. Rieppel O, Kearney M (2001) The origin of snakes: limits of a scientific debate. Biologist 48:110–114Google Scholar
  110. Rieppel O, Kearney M (2002) Similarity. Biol J Linn Soc Lond 75:59–82. doi: 10.1046/j.1095-8312.2002.00006.x CrossRefGoogle Scholar
  111. Rieppel O, Kearney M (2007) The poverty of taxonomic characters. Biol Philos 22:95–113. doi: 10.1007/s10539-006-9024-z CrossRefGoogle Scholar
  112. Sanderson MJ, Donoghue MJ (1996) The relationship between homoplasy and confidence in a phylogenetic tree. In: Sanderson MJ, Hufford L (eds) Homoplasy. The recurrence of similarity in evolution. Academic Press, San Diego, pp 67–89Google Scholar
  113. Schuh RT (1999) Biological systematics: principles and applications. Cornell University Press, IthacaGoogle Scholar
  114. Scotland RW, Olmstead RG, Bennett JR (2003) Phylogeny reconstruction: the role of morphology. Syst Biol 52:539–548Google Scholar
  115. Sereno PC (2007) Logical basis for morphological characters in phylogenetics. Cladistics 23:565–587Google Scholar
  116. Smith ND, Turner AH (2005) Morphology’s role in phylogeny reconstruction: perspectives from paleontology. Syst Biol 54:166–173. doi: 10.1080/10635150590906000 CrossRefGoogle Scholar
  117. Sober E (1983) Parsimony methods in systematics. In: Platnick NI, Funk VA (eds) Advances in cladistics, vol 2. Columbia University Press, New York, pp 37–47Google Scholar
  118. Sober E (1988) Reconstructing the past. Parsimony, evolution, and inference. MIT Press, CambridgeGoogle Scholar
  119. Sober E (2005) Parsimony and its presuppositions. In: Albert VA (ed) Parsimony, phylogeny, and genomics. Oxford University Press, Oxford, pp 43–53Google Scholar
  120. Sober E (2008) Evidence and evolution. The logic behind the science. Cambridge University Press, CambridgeGoogle Scholar
  121. Sneath PHA, Sokal RR (1973) Numerical taxonomy. The principles and practice of numerical classification. WH Freeman, San FranciscoGoogle Scholar
  122. Stevens PF (1984) Homology and phylogeny: morphology and systematics. Syst Bot 9:395–409. doi: 10.2307/2418788 CrossRefGoogle Scholar
  123. Stevens PF (1991) Character states, morphological variation, and phylogenetic analysis: a review. Syst Bot 16:553–583. doi: 10.2307/2419343 CrossRefGoogle Scholar
  124. Stevens PF (2000) On characters and character states: do overlapping and non-overlapping variation, morphology and molecules all yield data of the same value? In: Scotland R, Pennington RT (eds) Homology and systematics. Coding characters for phylogenetic analysis. Taylor and Francis, London, pp 81–105Google Scholar
  125. Thiele K (1993) The holy grail of the perfect character: the cladistic treatment of morphometric data. Cladistics 9:275–304. doi: 10.1111/j.1096-0031.1993.tb00226.x CrossRefGoogle Scholar
  126. Van Fraassen B (1980) The scientific image. Oxford University Press, OxfordCrossRefGoogle Scholar
  127. van Syoc RJ, Winther RG (1999) Sponge-inhabiting barnacles of the Americas: a new species of Acasta (Cirripedia, Archaeobalanidae), first record from the eastern Pacific, including discussion of the evolution of cirral morphology. Crustaceana 72:467–486. doi: 10.1163/156854099503528 CrossRefGoogle Scholar
  128. Vergara-Silva F Pattern cladistics and the realism—antirealism debate in the philosophy of biology (This issue)Google Scholar
  129. Wägele K (2004) Hennig’s phylogenetic systematics brought up to date. In: Williams DM, Forey PL (eds) Milestones in systematics. CRC Press, Boca Raton, pp 101–125Google Scholar
  130. Wagner GP (1994) Homology and the mechanisms of development. In: Hall BK (ed) Homology. The hierarchical basis of comparative biology. Academic Press, San Diego, pp 273–299Google Scholar
  131. Wagner GP (1996) Homologues, natural kinds and the evolution of modularity. Am Zool 36:36–43Google Scholar
  132. Wagner GP (ed) (2001) The character concept in evolutionary biology. Academic Press, San DiegoGoogle Scholar
  133. Wiley EO (1981) Phylogenetics. The theory and practice of phylogenetic systematics. Wiley, New YorkGoogle Scholar
  134. Wiley EO, Siegel-Causey D, Brooks DR, Funk VA (1991) The compleat cladist. A primer of phylogenetic procedures. University of Kansas Museum of Natural HistoryGoogle Scholar
  135. Williams DM, Ebach MC (2007) Foundations of Systematics and Biogeography. Springer, New YorkGoogle Scholar
  136. Williams DM, Scotland RW, Humphries CJ, Siebert DJ (1996) Confusion in philosophy: a comment on Williams. Synthese 108:127–136. doi: 10.1007/BF00414008 CrossRefGoogle Scholar
  137. Williams DM, Siebert DJ (2000) Characters, homology and three-item analysis. In: Scotland R, Pennington RT (eds) Homology and systematics. Coding characters for phylogenetic analysis. Taylor and Francis, London, pp 183–208Google Scholar
  138. Williams P (1992) Confusion in cladism. Synthese 91:135–152. doi: 10.1007/BF00484973 CrossRefGoogle Scholar
  139. Wilson RA (ed) (1999) Species: new interdisciplinary essays. MIT Press, CambridgeGoogle Scholar
  140. Wimsatt WC (2007) Re-engineering philosophy for limited beings: piecewise approximations to reality. Harvard University Press, CambridgeGoogle Scholar
  141. Winther RG (2001) Varieties of modules: kinds, levels, origins and behaviors. J Exp Zool B (Mol Dev Evol) 291:116–129. doi: 10.1002/jez.1064 CrossRefGoogle Scholar
  142. Winther RG (2006a) Fisherian and Wrightian perspectives in evolutionary genetics and model-mediated imposition of theoretical assumptions. J Theor Biol 240:218–232. doi: 10.1016/j.jtbi.2005.09.010 CrossRefGoogle Scholar
  143. Winther RG (2006b) On the dangers of making scientific models ontologically independent: taking Richard Levins’ warnings seriously. Biol Philos 21:703–724. doi: 10.1007/s10539-006-9053-7 CrossRefGoogle Scholar
  144. Winther RG (2006c) Parts and theories in compositional biology. Biol Philos 21:471–499. doi: 10.1007/s10539-005-9002-x CrossRefGoogle Scholar
  145. Winther RG (2008) Systemic Darwinism. Proc Natl Acad Sci USA 105(33):11833–11838. doi: 10.1073/pnas.0711445105 CrossRefGoogle Scholar
  146. Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci USA 97:8392–8396. doi: 10.1073/pnas.97.15.8392 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Philosophy DepartmentUniversity of CaliforniaSanta CruzUSA

Personalised recommendations