Acta Biotheoretica

, Volume 56, Issue 3, pp 233–247 | Cite as

Modelling of Cells Bioenergetics

  • Andrzej Kasperski
Regular Article


This paper presents an integrated model describing the control of Saccharomyces cerevisiae yeast cells bioenergetics. This model describes the oxidative and respirofermentative metabolism. The model assumes that the mitochondria of the Saccharomyces cerevisiae cells are charged with NADH during the tricarboxylic acid cycle, and NADH is discharged from mitochondria later in the electron transport system. Selected effects observed in the Saccharomyces cerevisiae eucaryotic cells, including the Pasteur's and Crabtree effects, are also modeled.


Cell mathematical model Crabtree effect Kluyver effect Mitochondria Pasteur's effect 



Tricarboxylic acid


The rate of mitochondria charging with NADH


The rate of NADH discharging from mitochondria


Positive feedback for ATP


The nth DOC oscillation cycle


The nth glucose portion


Dissolved O2 concentration in the culture medium


The set value of DOC


Respiratory quotient


The set value of RQ


The respiratory quotient when no ethanol is being produced


The maximum value of respiratory quotient in the current DOC oscillation cycle


The maximum value of respiratory quotient in the nth DOC oscillation cycle


The maximum value of glucose concentration in the culture medium in the DOC oscillation cycle


The glucose concentration in the culture medium


The critical value of glucose concentration, denotes such glucose concentration in the culture medium which, if exceeded, causes fermentation in good aerobic conditions


The minimal level of intramitochondrial NADH


The normal level of intramitochondrial NADH


The critical level of intramitochondrial NADH


The ethanol production rate


The oxygen uptake rate



I am grateful to Prof. Tadeusz Lachowicz at the University of Wroclaw, Poland and Prof. Mykhailo V. Gonchar from the Institute of Cell Biology, NAS, Ukraine for their help and critical reading of this article. I am also sincerely indebted to Prof. Tadeusz Miskiewicz and Ms Alicja Stempniak from the Department of Bioprocess Engineering, Wroclaw University of Economics, Poland, for their help in the preparation and execution of my experiments.


  1. Bakker BM, Overkamp KM, van Maris AJA, Kötter P, Luttik MA, van Dijken JP, Pronk JT (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25:15–37CrossRefGoogle Scholar
  2. Balaban RS (2006) Modeling mitochondrial function. Am J Physiol Cell Physiol 291:C1107–C1113CrossRefGoogle Scholar
  3. Bellgardt KH (2000) Baker’s yeast production. In: Schügerl K, Bellgardt KH (eds) Bioreaction engineering: modeling and control. Springer, Berlin Heidelberg New York, 277–320Google Scholar
  4. Chen KC, Wu WT, Chang KY (1986) Computer control for continuous cultivation of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 24:113–116Google Scholar
  5. Cortassa S, Aon MA (1994) Metabolic control analysis of glycolysis and branching to ethanol production in chemostat cultures of Saccharomyces cerevisiae under carbon, nitrogen, or phosphate limitations. Enzyme Microb Technol 16:761–770CrossRefGoogle Scholar
  6. Cortassa S, Aon MA (1997) Distributed control of the glycolytic flux in wild-type cells and catabolite repression mutants of Saccharomyces cerevisiae growing in carbon-limited chemostat cultures. Enzyme Microb Technol 21:596–602CrossRefGoogle Scholar
  7. Cortassa S, Aon MA, Marban E, Winslow RL, O’Rourke B (2003) An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys J 84:2734–2755Google Scholar
  8. Daum G (2000) The yeast Saccharomyces cerevisiae, a eukaryotic model for cell biology. Microsc Res Tech 51:493–495CrossRefGoogle Scholar
  9. Dellweg H, Bronn WK, Hartmeier W (1977) Respiration rates of growing and fermenting yeast. Kemia-Kemi 12:611–615Google Scholar
  10. Enfors SO, Hedenberg J, Olsson K (1990) Simulation of the dynamics in the baker’s yeast process. Bioprocess Eng 5:191–198CrossRefGoogle Scholar
  11. Engelberg D, Perlman R, Levitzki A (1989) Transmembrane signalling in Saccharomyces cerevisiae. Cell Signal 1:1–7CrossRefGoogle Scholar
  12. Forest L, San Martín J, Padilla F, Chassat F, Giroud F, Demongeot J (2004) Morphogenetic processes: application to cambial growth dynamics. Acta Biotheor 52:415–438CrossRefGoogle Scholar
  13. Galazzo JL, Bailey JE (1990) Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae. Enzyme Microb Technol 12:162–172CrossRefGoogle Scholar
  14. Gillespie CS, Proctor CJ, Boys RJ, Shanley DP, Wilkinson DJ, Kirkwood TB (2004) A mathematical model of ageing in yeast. J Theor Biol 229:189–196CrossRefGoogle Scholar
  15. Harris DA, Das AM (1991) Control of mitochondrial ATP synthesis in the heart. Biochem J 280:561–573Google Scholar
  16. He RQ, Li CY, Zhao XA (1996) Estimation of the optimal concentrations of residual sugar and cell growth rate for a fed-batch culture of Saccharomyces cerevisiae. Appl Biochem Biotechnol 60:229–244CrossRefGoogle Scholar
  17. Hess B (1979) The glycolytic oscillator. J Exp Biol 81:7–14Google Scholar
  18. Hospodka J (1966) Oxygen-absorption rate-controlled feeding of substrate into aerobic microbial cultures. Biotechnol Bioeng 8:117–134CrossRefGoogle Scholar
  19. Kasperski A, Miskiewicz T (2008) Optimization of pulsed feeding in a baker’s yeast process with dissolved oxygen concentration as a control parameter. Biochem Eng J. doi: 10.1016/j.bej.2008.01.002 Google Scholar
  20. Käppeli O, Sonnleitner B (1986) Regulation of sugar metabolism in Saccharomyces-type yeast: experimental and conceptual considerations. Crit Rev Biotechnol 4:299–325CrossRefGoogle Scholar
  21. McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425Google Scholar
  22. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191:144–148CrossRefGoogle Scholar
  23. Noda M, Yamashita S, Takahashi N, Eto K, Shen L, Izumi K, Daniel S, Tsubamoto Y, Nemoto T, Iino M, Kasai H, Sharp GWG, Kadowaki T (2002) Switch to anaerobic glucose metabolism with NADH accumulation in the ß-cell model of mitochondrial diabetes: characteristics of ßHC9 cells deficient in mitochondrial DNA transcription. J Biol Chem 277:41817–41826CrossRefGoogle Scholar
  24. Overkamp KM, Bakker BM, Kotter P (2000) In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria. J Bacteriol 182:2823–2830CrossRefGoogle Scholar
  25. Petrik M, Käppeli O, Fiechter A (1983) An expanded concept for the glucose effect in the yeast Saccharomyces cerevisiae: involvement of short- and long-term regulation. J Gen Microbiol 129:43–49Google Scholar
  26. Postma E, Verduyn C, Scheffers WA, van Dijken JP (1989) Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 55:468–477Google Scholar
  27. Pritchard L, Kell DB (2002) Schemes of flux control in a model of Saccharomyces cerevisiae glycolysis. Eur J Biochem 269:3894–3904CrossRefGoogle Scholar
  28. Przybyla-Zawislak B, Gadde DM, Ducharme K, McCammon MT (1999) Genetic and biochemical interactions involving tricarboxylic acid cycle (TCA) function using a collection of mutants defective in all TCA cycle genes. Genetics 152:153–166Google Scholar
  29. Ratledge C (1991) Yeast physiology—a micro-synopsis. Bioprocess Eng 6:195–203CrossRefGoogle Scholar
  30. Rizzi M, Baltes M, Theobald U, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II Mathematical model. Biotechnol Bioeng 55:592–608CrossRefGoogle Scholar
  31. Snoep JL (2005) The Silicon Cell initiative: working towards a detailed kinetic description at the cellular level. Curr Opin Biotech 16:336–343CrossRefGoogle Scholar
  32. Sonnleitner B, Käppeli O (1986) Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: formulation and verification of a hypothesis. Biotechnol Bioeng 28:927–937CrossRefGoogle Scholar
  33. Teusink B, Passarge J, Reijenga CA, Esgalhado E, van der Weijden CC, Schepper M, Walsh MC, Bakker BM, van Dam K, Westerhoff HV, Snoep JL (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267:5313–5329CrossRefGoogle Scholar
  34. Verduyn C, Zomerdijk TPL, van Dijken JP, Scheffers WA (1984) Continuous measurement of ethanol production by aerobic yeast suspensions with an enzyme electrode. Appl Microbiol Biotechnol 19:181–185CrossRefGoogle Scholar
  35. Wang HY, Cooney CL, Wang D.I.C (1977) Computer-aided. baker’s yeast fermentation. Biotechnol Bioeng 19:68–86Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Faculty of Mathematics, Computer Science and EconometricsUniversity of Zielona Gora, The BTFZielona GoraPoland

Personalised recommendations