Acta Biotheoretica

, Volume 55, Issue 4, pp 305–316 | Cite as

Populations with Explicit Borders in Space and Time: Concept, Terminology, and Estimation of Characteristic Parameters

  • Manfred A. PfeiferEmail author
  • Klaus Henle
  • Josef Settele
Regular Article


Biologists studying short-lived organisms have become aware of the need to recognize an explicit temporal extend of a population over a considerable time. In this article we outline the concept and the realm of populations with explicit spatial and temporary boundaries. We call such populations “temporally bounded populations”. In the concept, time is of the same importance as space in terms of a dimension to which a population is restricted. Two parameters not available for populations that are only spatially defined characterise temporally bounded populations: total population size, which is the total number of individuals present within the temporal borders, and total residence time, which is the sum of the residence times of all individuals. We briefly review methods to estimate these parameters. We illustrate the concept for the large blue butterfly (Maculinea nausithous) and outline insights into ecological and conservation-relevant processes that cannot be gained without the use of the concept.


Temporally bounded population Population concepts Total population size Total residence time Discrete generation Population viability analysis Population ecology Maculinea nausithous 



We thank two unknown reviewers for their constructive comments on the manuscript. This study was partly funded by the German Ministry of Education and Science (BMBF) within the MOSAIK-Project (BMBF 01 LN 0007) and by the Commission of the European Union within the project MacMan (EVK2–CT-2001-00126).


  1. Akçakaya HR, Burgman MA, Ginzburg LV (1999) Applied population ecology, 2nd edn. Sinauer Associates, SunderlandGoogle Scholar
  2. Anstett MC, Michaloud G, Kjellberg F (1995) Critical population size for fig/wasp mutualism in a seasonal environment: effect and evolution of the duration of female receptivity. Oecologia 103:453–461CrossRefGoogle Scholar
  3. Arnason AN (1973) The estimation of population size, migration rates and survival in a stratified population. Res Popul Ecol 15:1–8CrossRefGoogle Scholar
  4. Bairlein F (1981) Ökosystemanalyse der Rastplätze von Zugvögeln. Ökologie der Vögel 3:7–137Google Scholar
  5. Barbault R (1995) Écologie des peuplements. Structure et dynamique de la biodiversité. Masson, ParisGoogle Scholar
  6. Begon M, Harper JL, Townsend CR (1991) Ökologie. Birkhäuser, BaselGoogle Scholar
  7. Bergman KO (2000) Ecology and conservation of the butterfly Lopinga achine. PhD-Thesis. Department of Biology, Linköpings Universitet. Liköping, SwedenGoogle Scholar
  8. Berryman AA (1981) Population systems. Plenum Press, New YorkGoogle Scholar
  9. Biedermann R (1997) Populationsökologische Untersuchungen an Zikaden (Homoptera, Auchenorrhyncha): Zum Einfluss von Habitatqualität, Habitatgröße und Isolation auf das Vorkommen und Überleben von Populationen. PhD-Thesis. University of Mainz. Mainz, GermanyGoogle Scholar
  10. Boyce MS (1992) Population viability analysis. Annu Rev Ecol Syst 23:481–506CrossRefGoogle Scholar
  11. Bronstein JL, Gouyon PH, Gliddon C, Kjellbergand F, Michaloud G (1990) The ecological consequences of flowering asynchrony in monoecious figs: a simulation study. Ecology 71:2145–2156CrossRefGoogle Scholar
  12. Burgman MA, Ferson S, Akçakaya HR (1993) Risk assessment in conservation biology. Chapman & Hall, LondonGoogle Scholar
  13. Calabrese JM, Fagan WF (2004) Lost in time, lonely, and single: reproductive asynchrony and the Allee effect. Am Nat 164:25–37CrossRefGoogle Scholar
  14. Caughley G (1980) Analysis of vertebrate populations. John Wiley, Chichester, New YorkGoogle Scholar
  15. Crosbie SF, Manly BFJ (1985) Parsimonious modelling of capture-mark-recapture studies. Biometrics 41:385–398CrossRefGoogle Scholar
  16. Falconer DS (1989) Introduction to quantitative genetics, 3rd edn. Longman, LondonGoogle Scholar
  17. Garcia-Barros E (2000) Comparative data on the adult biology, ecology and behaviour of species belonging to the genera Hipparchia, Chazara and Kanetisa in central Spain (Nymphalidae: Satyrinae). Nota lepidopterologica 23(2):119–140Google Scholar
  18. Griebeler EM, Pauler R, Poethke HJ (1995) Maculinea arion (Lepidoptera: Lycaenidae): Ein Beispiel für die Deduktion von Naturschutzmaßnahmen aus einem Modell. Verhandlungen der Gesellschaft für Ökologie 24:201–206Google Scholar
  19. Groom MJ (1998) Allee effects limit population viability of an annual plant. Am Nat 151:487–496CrossRefGoogle Scholar
  20. Günther R (1996) Die Amphibien und Reptilien Deutschlands. Gustav Fischer, JenaGoogle Scholar
  21. Hanski I, Alho J, Moilanen A (2000) Estimating the parameters of survival and migration of individuals in metapopulations. Ecology 81:239–251CrossRefGoogle Scholar
  22. Hanski I, Gilpin M (1991) Metapopulation dynamics: brief history and conceptual domain. Biol J Linn Soc 42:3–16Google Scholar
  23. Henle K (2001) Fang-Wiederfang-Methoden: Generelle Grundlagen, Historische Entwicklung und Aktueller Entwicklungsstand. Beiträge zur Ökologie 4:1–14Google Scholar
  24. Henle K (2005) Analysis of recapture data from breeding populations of amphibians: on temporary emigration, model assumptions, bias, and common toads. Amphib-reptil 26:7–16CrossRefGoogle Scholar
  25. Henle K, Amler K, Bahl A, Finke E, Frank K, Settele J, Wissel C (1999) Faustregeln als Entscheidungshilfen für Planung und Management im Naturschutz. In: Amler K, Bahl A, Henle K, Kaule G, Poschlod P, Settele J (eds) Populationsbiologie in der Naturschutzpraxis. Eugen Ulmer, Stuttgart, pp 267–290Google Scholar
  26. Henle K, Davies KF, Kleyer M, Margules C, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodiv Conserv 13:207–251CrossRefGoogle Scholar
  27. Hestbeck JB (1995) Population study and management of Atlantic flyway Canada geese. J Appl Stat 22(5–6):877–890CrossRefGoogle Scholar
  28. Jax K (2002) Die Einheiten der Ökologie. Analyse, Methodenentwicklung und Anwendung in Ökologie und Naturschutz. Peter Lang, FrankfurtGoogle Scholar
  29. Kluge AG (1981) The life history, social organization and parental behavior of Hyla rosenbergi Boulenger, a nest building gladiator frog. Misc Publ Mus Zool Univ Mich 160:1–170Google Scholar
  30. Köhler G (1999) Ökologische Grundlagen von Aussterbeprozessen: Fallstudien an Heuschrecken (Caelifera et Ensifera). Laurenti, BochumGoogle Scholar
  31. Krebs CJ (1999) Ecological methodology, 2nd edn. Benjamin Cummings, Menlo ParkGoogle Scholar
  32. Krebs CJ (2001) Ecology. Benjamin Cummings, San FranciscoGoogle Scholar
  33. Lande R (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am Nat 142:911–927CrossRefGoogle Scholar
  34. Manly BFJ (1989) A review of methods for the analysis of stage-frequency data. In: McDonald LL, Manly BFJ, Lockwood J, Logan J (eds) Estimation and analysis of insect populations. Springer, Berlin, pp 3–69Google Scholar
  35. Manly BFJ, Parr MJ (1968) A new method of estimating population size, survivorship, and birth rate from capture-recapture data. Trans Soc Br Entomol 18:81–89Google Scholar
  36. Matsumoto K (1985) Population dynamics of the Japanese clouded apollo Parnassius glacialis Butler (Lepidoptera: Papilionidae). Changes in population size and related parameters for three successive generations. Res Popul Ecol 27:301–312CrossRefGoogle Scholar
  37. McCarthy MA (1997) The Allee effect, finding mates and theoretical models. Ecolo Modell 103:99–102CrossRefGoogle Scholar
  38. Munguira ML, Martin J (1999) Action plan for Maculinea butterflies in Europe. Nature and environment, No. 97. Council of Europe Publishing, StrasbourgGoogle Scholar
  39. Nentwig W, Bacher S, Beierkuhnlein C, Brandl R, Grabherr G (2004) Ökologie. Spektrum, HeidelbergGoogle Scholar
  40. Nowicki P, Richter A, Glinka U, Holzschuh A, Toelke U, Henle K, Woyciechowski M, Settele J (2005) Less input same output—simplified approach for population size assessment in Lepidoptera. Popul Ecol 47:203–212CrossRefGoogle Scholar
  41. Paradis E, Guedon G, Pradel R (1993) Estimation of sex- and age-related survival rates in a microtine population. J Wildl Manage 57(1):158–163CrossRefGoogle Scholar
  42. Petit S, Moilanen A, Hanski I, Baguette M (2001) Metapopulation dynamics of the bog fritillary butterfly: movements between habitat patches. Oikos 92:491–500CrossRefGoogle Scholar
  43. Pfeifer MA (2005) Ein verbessertes Schätzverfahren für Gesamtpopulationsgrössen bei Tagfaltern und anderen Invertebraten. Linzer biologische Beiträge 37(1):113–128Google Scholar
  44. Pfeifer MA, Andrick UR, Frey W, Settele J (2000) On the ethology and ecology of a small and isolated population of the dusky large blue butterfly Glaucopsyche (Maculinea) nausithous (Lycaenidae). Nota lepidopterologica 23(2):147–172Google Scholar
  45. Pfeifer MA, Glinka U, Settele J (2004) Die Schätzung von Populationsgrößen bei Tagfaltern anhand von Präimaginalstadien am Beispiel von Ameisenbläulingen (Lepidoptera: Lycaenidae: Maculinea). Mainzer naturwissenschaftliches Archiv 42:225–244Google Scholar
  46. Pollock KH, Nichols JD, Brownie C, Heines JE (1990) Statistical inference for capture-recapture experiments. Wildl Mongr 107:1–96Google Scholar
  47. Pradel R, Hines JE, Lebreton JD, Nichols JD (1997) Capture-recapture survival models taking account of transients. Biometrics 53:60–72CrossRefGoogle Scholar
  48. Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132:652–661CrossRefGoogle Scholar
  49. Purrington CB, Schmitt J (1998) Consequences of sexually dimorphic timing of emergence and flowering in Silene latifolia. J Ecol 81:807–811Google Scholar
  50. Schwarz CJ, Arnason AN (1996) A general methodology for the analysis of capture-recapture experiments in open populations. Biometrics 52:860–873CrossRefGoogle Scholar
  51. Schwarz CJ, Bailey RE, Irvine JR, Dalziel FC (1993) Estimating salmon spawning escapement using capture-recapture methods. Can J Fish Aquatic Sci 50:1181–1191CrossRefGoogle Scholar
  52. Seber GAF (1982) The estimation of animal abundance. Charles Griffin, LondonGoogle Scholar
  53. Settele J, Feldmann R, Henle K, Kockelke K, Poethke HJ (2000) Methoden der quantitiativen Erfassung von Tagfaltern. In: Settele J, Feldmann R, Reinhardt R (eds) Die Tagfalter Deutschlands. Eugen Ulmer, Stuttgart, pp 144–185Google Scholar
  54. Stelter C (1997) Persistenz von kleinen Schmetterlingspopulationen in dynamischer Landschaft – ein Populationsdynamik-Modell. Cullivier, GöttingenGoogle Scholar
  55. Stelter C (1998) Genügt die Modellierung der Habitatqualität durch eine einzige Kapazität, um die Populationsdynamik von Schmetterlingen zu verstehen? Verhandlungen der Gesellschaft für Ökologie 28:161–168Google Scholar
  56. Sykes SD, Botsford LW (1986) Chinook salmon, Oncorhynchus tshawytscha, spawning escapement based on multiple mark-recapture of carcasses. Fish Bull 84:261–270Google Scholar
  57. Thomas JA (1983) A quick method for estimating butterfly numbers during surveys. Biol Conserv 27:195–211CrossRefGoogle Scholar
  58. Thompson K, Bakker JP, Bekker RM (1997) Soil seed banks of North-West Europe. University Press, CambridgeGoogle Scholar
  59. Veith M, Bahl A, Seitz A (1999) Populationsgenetik im Naturschutz - Einsatzmöglichkeiten und Fallbeispiele. In: Amler K, Bahl A, Henle K, Kaule G, Poschlod P, Settele J (eds) Populationsbiologie in der Naturschutzpraxis. Eugen Ulmer, Stuttgart, pp 112–126Google Scholar
  60. Wagner G, Berger U (1996) A population vulnerability analysis of the red-winged grasshopper, Oedipoda germanica (Caelifera: Acrididae). In: Settele J, Margules C, Poschlod P, Henle K (eds) Species survival in fragmented landscapes. Kluwer Academic Publishers, Dordrecht, pp 312–319Google Scholar
  61. Warren MS, Pollard E, Bibby TJ (1986) Annual and long-term changes in a population of the wood white butterfly Leptidea sinapis. J Anim Ecol 55:707–719CrossRefGoogle Scholar
  62. Watt WB, Chew FS, Snyder LRG, Watt AG, Rothschild DE (1977) Population structure of pierid butterflies: I. numbers and movements of some montane colias species. Oecologia 27:1–22CrossRefGoogle Scholar
  63. Wells H, Strauss EG, Rutter MA, Wells PH (1998) Mate location, population growth and species extinction. Biol Conserv 86:317–324CrossRefGoogle Scholar
  64. Whitehead H (1990) Mark-recapture estimates with emigration and re-immigration. Biometrics 46:473–479CrossRefGoogle Scholar
  65. Wiklund C, Fagerström T (1977) Why do males emerge before females? A hypothesis to explain the incidence of protandry in butterflies. Oecologia 31:317–324CrossRefGoogle Scholar
  66. Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations. Academic Press, San DiegoGoogle Scholar
  67. Wissel C, Stephan T, Zaschke S (1994) Modelling extinction and survival of small populations. In: Remmert H (ed) Minimum viable populations. Springer, Heidelberg, pp 67–103Google Scholar
  68. Zonneveld C (1991) Estimating death rates from transect counts. Ecol Entomol 16:115–121Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Manfred A. Pfeifer
    • 1
    Email author
  • Klaus Henle
    • 2
  • Josef Settele
    • 3
  1. 1.Bobenheim-RoxheimGermany
  2. 2.Department of Conservation BiologyUFZ-Helmholtz Center for Environmental ResearchLeipzigGermany
  3. 3.Department of Community EcologyUFZ-Helmholtz Center for Environmental ResearchHalleGermany

Personalised recommendations