Acta Biotheoretica

, Volume 54, Issue 4, pp 235–253 | Cite as

Natural Genome-Editing Competences of Viruses

  • Günther WitzanyEmail author


It is becoming increasingly evident that the driving forces of evolutionary novelty are not randomly derived chance mutations of the genetic text, but a precise genome editing by omnipresent viral agents. These competences integrate the whole toolbox of natural genetic engineering, replication, transcription, translation, genomic imprinting, genomic creativity, enzymatic inventions and all types of genetic repair patterns. Even the non-coding, repetitive DNA sequences which were interpreted as being ancient remnants of former evolutionary stages are now recognized as being of viral descent and crucial for higher-order regulatory and constitutional functions of protein structural vocabulary. In this article I argue that non-randomly derived natural genome editing can be envisioned as (a) combinatorial (syntactic), (b) context-specific (pragmatic) and (c) content-sensitive (semantic) competences of viral agents. These three-leveled biosemiotic competences could explain the emergence of complex new phenotypes in single evolutionary events. After short descriptions of the non-coding regulatory networks, major viral life strategies and pre-cellular viral life three of the major steps in evolution serve as examples: There is growing evidence that natural genome-editing competences of viruses are essential (1) for the evolution of the eukaryotic nucleus, (2) the adaptive immune system and (3) the placental mammals.


non-coding DNA repetitive elements genome editing persistent viral life-style 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ast G. (2005). The alternative genome. Scientific American 292: 58–65CrossRefGoogle Scholar
  2. Batzer M.A., D.L. Deininger (2002). ALU Repeats and Human Genomic Diversity. Nature Reviews Genetics 3: 370–380CrossRefGoogle Scholar
  3. Bell P.J.L. (2001). Viral Eukaryogenesis: Was the ancestor of the nucleus a complex DNAVirus? Journal of Molecular Evolution 53: 251–256CrossRefGoogle Scholar
  4. Bell, P.J.L. (2006). Sex and the eukaryotioc cell cycle is consistent with a viral ancestry for the eukaryotic nucleus. Journal of Theoretical Biology, Doi: 10.1016/j.jtbi.2006.05.015Google Scholar
  5. Brett D., H. Pospisil, J. Valcarcel, J. Reich, P. Bork (2002). Alternative splicing and genome complexity. Nature Genetics 30: 29–30CrossRefGoogle Scholar
  6. Buchon N., C. Vaury (2006). RNAi: A defensive RNA-silencing against viruses and transposable elements. Heredity 96: 195–202CrossRefGoogle Scholar
  7. Carroll S.B. (2005). Evolution at two levels: On genes and form. PLoS Biology 3(7): e245CrossRefGoogle Scholar
  8. Deamer D., S. Singaram, S. Rajamani, V. Kompanichenko, S. Guggenheim (2006). Self-assembly processes in the prebiotic environment. Philosophical Transactions of the Royal Society 361: 1809–1818CrossRefGoogle Scholar
  9. Deepak G., P.P. Majumder, C.B. Rao, S.K. Brahmachari, M. Mukerji (2003). Nonrandom distribution of alu elements in genes of various functional categories: Insight from analysis of human chromosomes 21 and 22. Molecular Biology and Evolution 20: 1420–1424CrossRefGoogle Scholar
  10. Dupressoir, A., G. Marceau, C. Vernochet, L. Benit, C. Kanellopoulos, V. Sapin and T. Heidmann (2005). Syncytin-A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae. Proceedings of the National Academy of Sciences of the USA 102: 725–730Google Scholar
  11. Eigen M., R. Winkler (1975). Das Spiel – Naturgesetze steuern den Zufall. München: PiperGoogle Scholar
  12. Eigen M., P. Schuster, W. Gardiner, R. Winkler-Oswatitsch (1981). The origin of genetic information. Scientific American 244: 78–94CrossRefGoogle Scholar
  13. Fire A. (2005). Nucleic acid structure and intracellular immunity: Some recent ideas from the world of RNAi. Quarterly Reviews of Biophysics 38: 303–309CrossRefGoogle Scholar
  14. Forterre, P. (2001). Genomics and early cellular evolution. The origin of the DNA world. Comptes rendus de l’Académie des sciences. Série 3, Sciences de la vie 324: 1067–1076Google Scholar
  15. Forterre P. (2002). The origin of DNA genomes and DNA replication proteins. Current Opinion in Microbiology 5: 525–532CrossRefGoogle Scholar
  16. Forterre P. (2005). The two ages of the RNA world, and the transition to the DNA world: A story of viruses and cells. Biochimie 87: 793–803CrossRefGoogle Scholar
  17. Forterre P. (2006). The origin of viruses and their possible roles in major evolutionary transitions. Virus Research 117: 5–16CrossRefGoogle Scholar
  18. Gabora L. (2006). Self-other organization: Why early life did not evolve through natural selection. Journal of Theoretical Biology 241: 443–450CrossRefGoogle Scholar
  19. Gao X., E.R. Havecker, P.V. Baranov, J.F. Atkins, D.F. Voytas (2003). Translational recoding signals between gag and pol in diverse LTR retrotransposons. RNA 9: 1422–1430CrossRefGoogle Scholar
  20. Jablonka E., M.J. Lamb (1989). The inheritance of acquired epigenetic variations. Journal of Theoretical Biology 139: 69–83Google Scholar
  21. Jablonka, E. and M.J. Lamb (2002). The changing concept of epigenetics. In: Speybroeck, L.v., Vijver, G.V.d. and Waele, D.D. (Eds.). From Epigenesis to Epigenetics. The Genome in Context. Annals of the New York Academy of Sciences 981: 82–96Google Scholar
  22. Jablonka E., M.J. Lamb (2006). The evolution of information in the major transitions. Journal of Theoretical Biology 239: 236–246CrossRefGoogle Scholar
  23. Jaenisch R., A. Bird (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics 33: 245–254CrossRefGoogle Scholar
  24. Jenuwein T., C.D. Allis (2001). Translating the histone code. Science 293: 1074–1080CrossRefGoogle Scholar
  25. Jortner J. (2006). Conditions for the emergence of life on the early earth: summary and reflections. Philosophical Transactions of the Royal Society 361: 1877–1891CrossRefGoogle Scholar
  26. Koonin E.V., T.G. Senkevich, V.V. Dolja (2006). The ancient virus world and evolution of cells. Biology Direct 1: 29CrossRefGoogle Scholar
  27. Mantegna R.N., S.V. Buldyrev, A.L. Goldberger, S. Havlin, S.C.K. Peng, M. Simons, H.E. Stanley (1994). Linguistic features of noncoding DNA sequences. Physical Review Letters 73: 3169–3172CrossRefGoogle Scholar
  28. Margulis, L. (1996). Archaeal-eubacterial mergers in the origin of Eukarya: Phylogenetic classification of life. Proceedings of the National Academy of Sciences of the USA 93: 1071–1076Google Scholar
  29. Margulis L. (1999). Die andere evolution. Heidelberg: Spektrum Akademischer VerlagGoogle Scholar
  30. Margulis L. (2004). Serial endosymbiotic theory (SET) and composite individuality. Transition from bacterial to eukaryotic genomes. Microbiology Today 31: 173–174Google Scholar
  31. Margulis, L., M.F. Dolan and R. Guerrero (2000). The chimeric eukaryote: Origin of the nucleus from the karyomastigont in amitochondriate protists. Proceedings of the National Academy of Sciences of the USA 97: 6954–6959Google Scholar
  32. Margulis L., D. Sagan (2002). Acquiring genomes. A theory of the origin of species. New York: Basic BooksGoogle Scholar
  33. Mattick J.S., M.J. Gagen (2001). The evolution of controlled multitasked gene networks: The role of introns and other noncoding rnas in the development of complex organisms. Molecular Biology and Evolution 18: 1611–1630Google Scholar
  34. Mattick J.S. (2001). Non-coding RNAs: The architects of eukaryotic complexity. EMBO Reports 2: 986–991CrossRefGoogle Scholar
  35. Mattick J.S. (2003). Challenging the dogma: The hidden layer of noncoding RNAs in complex organisms. BioEssays 25: 930–939CrossRefGoogle Scholar
  36. Mattick J.S. (2005). Das verkannte Genom-Programm. Spektrum der Wissenschaft 3: 62–69Google Scholar
  37. Maynard Smith, J. (1983). Models of evolution. Proceedings of the Royal Society of Biological Sciences 219: 315–325Google Scholar
  38. Odintsova M.S., N.P. Yurina (2000). RNA editing in plant chlorplasts and mitochondria. Fisiologia Rastenij 37: 307–320Google Scholar
  39. Odintsova M.S., N.P. Yurina (2005). Genomics and evolution of cellular organelles. Russian Journal of Genetics 41: 957–967CrossRefGoogle Scholar
  40. Pollard, K.S., S.R. Salama, N. Lambert, M.A. Lambot, S. Coppens, J.S. Pedersen, S. Katzman, B. King, C. Onodera, A. Siepel, A.D. Kern, C. Dehay, H. Igel, M. Ares Jr, P. Vanderhaegen and D. Haussler (2006). An RNA gene expressed during cortical development evolved rapidly in humans. Nature, DOI: 10.1038/nature05113Google Scholar
  41. Roossinck M.J. (2005). Symbiosis versus competition in plant virus evolution. Nature Reviews Microbiology 3: 917–924CrossRefGoogle Scholar
  42. Ryan F.P. (2004). Human endogenous retroviruses in health and disease: a symbiotic perspective. Journal of the Royal Society of Medicine 97: 560–565CrossRefGoogle Scholar
  43. Ryan F.P. (2006). Genomic creativity and natural selection. A modern synthesis. Biological Journal of the Linnean Society 88: 655–672CrossRefGoogle Scholar
  44. Shabalina S.A., N.A. Spiridonov (2004). The mammalian transcriptome and the function of non-coding DNA sequences. Genome Biology 5: 105eCrossRefGoogle Scholar
  45. Shapiro, J.A. (2002). Genome organization and reorganization in evolution: Formatting for computation and function. In: Speybroeck, L.v., Vijver G.V.d. and Waele, DD. (Eds.). From Epigenesis to Epigenetics. The Genome in Context. Annals of the New York Academy of Sciences 981: 111–134Google Scholar
  46. Shapiro J.A. (2004). A 21st century view of evolution: Genome system architecture, repetitive DNA, and natural genetic engineering. Gene 345: 91–100CrossRefGoogle Scholar
  47. Shapiro J.A., R. Sternberg (2005). Why repetitive DNA is essential to genome function. Biological Reviews 80: 1–24CrossRefGoogle Scholar
  48. Sternberg R. (2002). On the roles of repetitive DNA elements in the context of a unified genomic-epigenetic system. Annals of the New York Academy of Sciences 981: 154–188CrossRefGoogle Scholar
  49. Sternberg R., J.A. Shapiro (2005). How repeated retroelements format genome function. Cytogenetic and Genome Research 110: 108–116CrossRefGoogle Scholar
  50. Szathmary E. (2006). The origin of replicators and reproducers. Philosophical transactions of the Royal Society 361: 1761–1776CrossRefGoogle Scholar
  51. Taft R.J., J.S. Mattick (2004). Increasing biological complexity is positively correlated with the relative genome-wide expansion of non-protein-coding DNA sequences. Genome Biology 5: 1CrossRefGoogle Scholar
  52. True H., I. Berlin, S.L. Lindquist (2004). Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 431: 184–187CrossRefGoogle Scholar
  53. Turner B.M. (2000). Histone acetylation and an epigenetic code. BioEssays 22: 836–845CrossRefGoogle Scholar
  54. Turner B.M. (2002). Cellular memory and the histone code. Cell 111: 285–291CrossRefGoogle Scholar
  55. Van De Vijver G., L. Van Speybroeck and D. De Waele (2002). Epigentics: A challenge for genetics, evolution and development. In: Speybroeck, L.v., Vijver G.V.d. and D. DeWaele (Eds.). From Epigenesis to Epigenetics. The Genome in Context. Annals of the New York Academy of Sciences 981: 1–6Google Scholar
  56. Van Speybroeck, L., G. Van de Vijver and D. DeWaele (2002). Preface. In: Speybroeck, L.v., Vijver G.V.d. and D. De Waele (Eds.). From Epigenesis to Epigenetics. The Genome in Context. Annals of the New York Academy of Sciences 981: viiGoogle Scholar
  57. Vendrami D. (2004). Noncoding DNA and the teem theory of inheritance, emotions and innate behaviour. Medical Hypotheses 64: 512–519CrossRefGoogle Scholar
  58. Vetsigian, K., C. Woese, N. Goldenfeld (2006). Collective evolution and the genetic code. Proceedings of the National Academy of Sciences of the USA 103: 10696–10701Google Scholar
  59. Villarreal, L.P. (2004). Can viruses make us humans? Proceedings of the American Philosophical Society 148: 296–323Google Scholar
  60. Villarreal L.P. (2005). Viruses and the Evolution of Life. Washington: American Society for Microbiology PressGoogle Scholar
  61. Villarreal L.P., V.R. DeFilippis, K.A. Gottlieb (2000). Acute and persistent viral life strategies and their relationship to emerging diseases. Virology 272: 1–6CrossRefGoogle Scholar
  62. Villarreal L.P., V.R. DeFilippis (2000). A hypothesis for DNA viruses as the origin of eukaryotic replication proteins. Journal of Virology 74: 7079–7084CrossRefGoogle Scholar
  63. Volff J.N. (2006). Turning junk into gold: Domestication of transposable elements and the creation of new genes in eukaryotes. BioEssays 28: 913–922CrossRefGoogle Scholar
  64. Wächtershäuser G. (1992). Groundworks for an evolutionary biochemistry: the iron–sulphur world. Progress in Biophysics and Molecular Biology 58: 85–201CrossRefGoogle Scholar
  65. Wang, Y., W. Fischle, W. Cheung, S. Jacobs, S. Khorasanizadeh and C.D. Allis (2004). Beyond the double helix: Writing and reading the histone code. In: Bock, G. and Goode, J. (Eds.). Reversible Protein Acetylation. Novartis Foundation, Vol. 259, pp. 3–17Google Scholar
  66. Watson, J.D., J. Witkowski, M. Gilman and M. Zoller (1992). Recombinant DNA. Scientific American BooksGoogle Scholar
  67. Wittgenstein L. (1972). Philosophical investigations. Oxford: Basil & BlackwellGoogle Scholar
  68. Witzany G. (1995). From the ‚logic of the molecular syntax’ to molecular pragmatism. Explanatory deficits in Manfred Eigen’s concept of language and communication. Evolution and Cognition 1: 148–168Google Scholar
  69. Witzany G. (2000). Life: The communicative structure. A new philosophy of biology. Norderstedt: Libri Books on DemandGoogle Scholar
  70. Witzany G. (2005). Natural history of life: History of communication logics and dynamics. SEED Journal 5: 27–55Google Scholar
  71. Witzany G. (2006a). The Logos of the Bios 1. Contributions to the foundation of a three-leveled biosemiotics. Helsinki: UmwebGoogle Scholar
  72. Witzany G. (2006b). Serial endosymbiotic theory (SET): The biosemiotic update. Acta Biotheoretica 54: 103–117CrossRefGoogle Scholar
  73. Xu Q., B. Modrek and C. Lee (2002). Genome-wide detection of tissue-specific alternative splicing in the human transcriptome. Nucleic Acids Research 30: 3754–3766CrossRefGoogle Scholar
  74. Zhang H.Y. (2006). The evolution of genomes and language. EMBO Reports 7:248–249Google Scholar

Copyright information

© Springer Science+Business Media, B.V. 2007

Authors and Affiliations

  1. 1.telos – Philosophische PraxisBuermoos, SalzburgAustria

Personalised recommendations