Acta Biotheoretica

, Volume 54, Issue 2, pp 103–117 | Cite as

Serial Endosymbiotic Theory (Set): The Biosemiotic Update

  • Günther WitzanyEmail author


The Serial Endosymbiotic Theory explains the origin of nucleated eukaryotic cells by a merging of archaebacterial and eubacterial cells. The paradigmatic change is that the driving force behind evolution is not ramification but merging. Lynn Margulis describes the symbiogenetic processes in the language of mechanistic biology in such terms as “merging”, “fusion”, and “incorporation”. Biosemiotics argues that all cell-cell interactions are (rule-governed) sign-mediated interactions, i.e., communication processes. As the description of plant communication demonstrates, the biosemiotic approach is not limited to the level of molecular biology, but is also helpful in examining all sign-mediated interactions between organisms on the phenotypic level. If biosemiotics also uses the notions of “language” and “communication” to describe non-human sign-mediated interactions, then the underlying scientific justification of such usage should be critically considered. Therefore, I summarize the history of this discussion held between 1920 and 1980 and present its result, the pragmatic turn.


symbiogenesis biosemiotics genome editing competence pragmatic turn abstractive fallacy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apel, K.O. (1974). Zur Idee einer transzendentalen Sprachpragmatik. Die Dreistelligkeit der Zeichenrelation und die “abstractive fallacy” in den Grundlagen der klassischen Transzendentalphilosophie und der sprachanalytischen Wissenschaftslogik. In Simon, J. (Ed.) Aspekte und Probleme der Sprachphilosophie. Verlag Karl Alber, Freiburg/München, pp. 283–326.Google Scholar
  2. Austin, J.L. (1962). How to do things with words. Oxford University Press, Oxford.Google Scholar
  3. Bais, H.P., S.W. Park, T.L. Weir, R.M. Callaway and J.M. Vivanco (2004). How plants communicate using the underground information superhighway. Trends in Plant Science 9: 26–32.CrossRefGoogle Scholar
  4. Baluska, F., D. Volkmann and P.W. Barlow (2004). Eukaryotic Cells and their Cell Bodies: Cell Theory Revised. Annals of Botany 94: 9–32.CrossRefGoogle Scholar
  5. Baluska, F., D.Volkmann, A. Hlavacka, S. Mancuso and P.W. Barlow (Eds.) (2006). Communication in Plants. Springer Verlag, Berlin/Heidelberg.Google Scholar
  6. Barbieri, M. (2001). The Organic Codes. The birth of semantic biology. Ancona: PeQuod.Google Scholar
  7. Bell, P. (2001). Viral eukaryogenesis: Was the ancestor of the nucleus a complex DNA virus? Journal of Molecular Evolution 53: 251–256.CrossRefGoogle Scholar
  8. Cavalier-Smith, T. and M.J. Beaton (1999). The skeletal function of non-coding DNA: New evidence from ancient cell chimeras. Genetics 106: 3–13.CrossRefGoogle Scholar
  9. Emmeche, C. and J. Hoffmeyer (2005). Code-duality and the semiotics of nature. Journal of Biosemiotics 1: 27–64.Google Scholar
  10. Habermas, J. (1979). Communication and Evolution of Society. Beacon Press, Boston.Google Scholar
  11. Hoffmeyer, J. (1996). Signs of meaning in the Universe. Indiana University Press, Bloomington.Google Scholar
  12. Jaenisch, R. and A. Bird (2003). Epigenetic regulation of gene expression: How the genome integrates intrinsic and environmental signals. Nature genetics supplement 33: 245–254.CrossRefGoogle Scholar
  13. Kull, K. (2005). A brief history of biosemiotics. Journal of Biosemiotics 1: 1–25.Google Scholar
  14. Margulis, L. and K.V. Schwartz (1988). Five Kingdoms. W. H. Freeman and Company, New York.Google Scholar
  15. Margulis, L. (1996). Archaeal-eubacterial mergers in the origin of Eukarya: Phylogenetic classification of life. Proceedings of the National Academy of Sciences of the USA 93: 1071–1076.CrossRefGoogle Scholar
  16. Margulis, L. (1999). Die andere Evolution. Spektrum Akademischer Verlag, Heidelberg.Google Scholar
  17. Margulis, L., M.F. Dolan and R. Guerrero (2000). The chimeric eukaryote: Origin of the nucleus from the karyomastigont in an amitochondriate protists. Proceedings of the National Academy of Sciences of the USA 97: 6954–6959.CrossRefGoogle Scholar
  18. Margulis, L. and D. Sagan (2002). Acquiring genomes. A Theory of the Origin of Species. Basic Books, New York.Google Scholar
  19. Margulis, L. (2004). Serial endosymbiotic theory (SET) and composite individuality. Transition from bacterial to eukaryotic genomes. Microbiology Today 31: 173–174.Google Scholar
  20. Markos, A. (2002). Readers of the Book of Life. Oxford University Press, Oxford/New York.Google Scholar
  21. Mattick, J.S. and M.J. Gagen (2001). The evolution of controlled multitasked gene networks: The role of introns and other noncoding RNAs in the development of complex organisms. Molecular Biology and Evolution 18: 1611–1630.Google Scholar
  22. Mattick, J.S. (2001). Non-coding RNAs: The architects of eukaryotic complexity. EMBO Reports 2: 986–991.CrossRefGoogle Scholar
  23. Mattick, J.S. (2003). Challenging the dogma: The hidden layer of noncoding RNAs in complex organisms. BioEssays 25: 930.CrossRefGoogle Scholar
  24. Mattick, J.S. (2005). Das verkannte Genom-Programm. Spektrum der Wissenschaft 3: 62–69.Google Scholar
  25. McCarthy, T. (1984). Translator's introduction. In: Habermas, J., The Theory of Communicative Action 1, p. ix, Beacon Press, Boston.Google Scholar
  26. Nöth, W. (2000). Handbuch der Semiotik. Metzler, Stuttgart.Google Scholar
  27. Pattee, H.H. (2005). The physics and metaphysics of biosemiotics. Journal of Biosemiotics 1: 223–238.Google Scholar
  28. Ryan, F. (2002). Darwin's blind spot: evolution beyond natural selection. Houghton Mifflin Company, Boston.Google Scholar
  29. Searcy, D.G. (2003). Metabolic integration during the evolutionary origin of mitochondria. Cell Research 13: 229–238.CrossRefGoogle Scholar
  30. Searle, J.R. (1976). Speech acts. An essay in the philosophy of language. Cambridge University Press.Google Scholar
  31. Schmitt, S. and R. Paro (2004). A reason for reading nonsense. Nature 429: 510–511.CrossRefGoogle Scholar
  32. Shapiro, J.A. and R.V. Sternberg (2005). Why repetitive DNA is essential to genome function. Biological Review 80: 1–24.CrossRefGoogle Scholar
  33. Spotswood, H.T. and B.M. Turner (2002). An increasingly complex code. The Journal of Clinical Investigation 110: 577–582.CrossRefGoogle Scholar
  34. Sternberg, R.V. (2002). On the roles of repetitive DNA elements in the context of a unified genomic-epigenetic system. Annals of the New York Academy of Sciences 981: 154–188.CrossRefGoogle Scholar
  35. Trewavas, A. (2003). Aspects of plant intelligence. Annals of Botany 92: 1–20.CrossRefGoogle Scholar
  36. Trewavas, A. (2004). Aspects of plant intelligence: An Answer to Firn. Annals of Botany 93: 353–357.CrossRefGoogle Scholar
  37. Trewavas, A. (2005). Green plants as intelligent organisms. Trends in Plant Science 10: 413–419.CrossRefGoogle Scholar
  38. True, H.L., I. Berlin and S.L. Lindquist (2004). Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 431: 184–187.CrossRefGoogle Scholar
  39. Turner, B. M. (2002). Cellular memory and the histone code. Cell 111: 285–291.CrossRefGoogle Scholar
  40. Villarreal, L.P. and V.R. De Filippis (2000). A hypothesis for DNA viruses as the origin of eukaryotic replication proteins. Journal of Virology 74: 7079–7084.CrossRefGoogle Scholar
  41. Villarreal, L.P. (2004). Can viruses make us humans? Proceedings of the American Philosophical Society 148: 296–323.Google Scholar
  42. Vollmert, B. (1985). Das Molekül und das Leben. Rowohlt, Reinbeck.Google Scholar
  43. Wang, Y., W. Fischle, W. Cheung, S. Jacobs, S. Khorasanizadeh and C.D. Allis (2004). Beyond the double helix: Writing and reading the histone code. In: Bock, G. and Goode, J. (Eds.) Reversible Protein Acetylation. Novartis Foundation, 2004.Google Scholar
  44. Walker, T.S. (2003). Root exudation and rhizosphere biology. Plant Physiology 132: 44–51.CrossRefGoogle Scholar
  45. Watson, J. D., M. Gilman, J. Witkowski and M. Zoller (21992). Recombinant DNA. W.H. Freeman and Company, New York.Google Scholar
  46. Wittgenstein, L. (1972). Philosophical Investigations. Basil & Blackwell, Oxford.Google Scholar
  47. Witzany, G. (1993). Natur der Sprache — Sprache der Natur. Sprachpragmatische Philosophie der Biologie. Königshausen & Neumann, Würzburg.Google Scholar
  48. Witzany, G. (1995). From the “logic of the molecular syntax” to molecular pragmatism. Evolution and Cognition 1: 148–168.Google Scholar
  49. Witzany, G. (1998). Explaining and understanding LIFE. Semiotica, 120: 421–438.Google Scholar
  50. Witzany, G. (2000). Life: The communicative structure. A New Philosophy of Biology. Libri Books on Demand, Norderstedt.Google Scholar
  51. Witzany, G. (2002). Reduction of biological phenomena? Deficits of systems theory and the alternatives. In: Schmitz, W. (Ed.), Sign Processes in Complex Systems, Mouton de Gruyter, Berlin/New York, 303–307.Google Scholar
  52. Witzany, G. (2005a). From biosphere to semiosphere to social lifeworlds. Biology as an understanding social science. TripleC-Cognition, Communication, Cooperation 3: 51–74.Google Scholar
  53. Witzany, G. (2005b). Natural history of life: History of communication logics and dynamics. S.E.E.D. Journal 5: 27–55.Google Scholar
  54. Witzany, G. (2006). The Logos of the Bios 1. Contributions to the foundation of a three-leveled Biosemiotics. Umweb, Helsinki.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.telos – Philosophische PraxisA-5111-Buermoos/SalzburgAustria

Personalised recommendations