Acta Biotheoretica

, Volume 53, Issue 3, pp 241–264 | Cite as

Evolutionary suicide

  • Kalle ParvinenEmail author
Review Article


The great majority of species that lived on this earth have gone extinct. These extinctions are often explained by invoking changes in the environment, to which the species has been unable to adapt. Evolutionary suicide is an alternative explanation to such extinctions. It is an evolutionary process in which a viable population adapts in such a way that it can no longer persist. In this paper different models, where evolutionary suicide occurs are discussed, and the theory behind the phenomenon is reviewed.


Evolutionary Process Alternative Explanation Great Majority Viable Population Population Adapt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allee, W.C., A. Emerson, T. Park and K. Schmidt (1949). Principles of Animal Ecology. Saunders, Philadelphia.Google Scholar
  2. Cadet, C. (1998). Dynamique adaptative de la dispersion dans une métapopulation: modèles stochastiques densité-dépendants. Master's thesis, University of Paris VI, France.Google Scholar
  3. Christiansen, F.B. (1991). On conditions for evolutionary stability for a continuously varying character. American Naturalist 138: 37–50.CrossRefGoogle Scholar
  4. Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, Albemarle Street, London.Google Scholar
  5. Darwin, C. (1871). The descent of man and selection in relation to sex. John Murray, Albemarle Street, London.Google Scholar
  6. Dercole, F. (2003). Remarks on branching-extinction evolutionary cycles. Journal of Mathematical Biology 47: 569–580.CrossRefGoogle Scholar
  7. Dieckmann, U. and M. Doebeli (1999). On the origin of species by sympatric speciation. Nature 400: 354–357.CrossRefGoogle Scholar
  8. Dieckmann, U., M. Heino and K. Parvinen (subm.). The adaptive dynamics of function-valued traits.Google Scholar
  9. Dieckmann, U. and R. Law (1996). The dynamical theory of coevolution: a derivation from stochastic ecological processes. Journal of Mathematical Biology 34: 579–612.CrossRefGoogle Scholar
  10. Dieckmann, U., P. Marrow and R. Law (1995). Evolutionary cycling in predator-prey interactions: Population dynamics and the red queen. Journal of Theoretical Biology 176: 91–102.CrossRefGoogle Scholar
  11. Dieckmann, U., M. Doebeli, J.A.J. Metz and D. Tautz (Eds.) (2004). Adaptive Speciation. Cambridge University Press.Google Scholar
  12. Diekmann, O., J.A.P. Heesterbeek and J.A.J. Metz (1990). On the definition and the computation of the basic reproduction ratio R0 in models for infectious-diseases in heterogeneous populations. Journal of Mathematical Biology 28: 365–382.CrossRefGoogle Scholar
  13. Doebeli, M. (1998). Invasion of rare mutants does not imply their evolutionary success: a counterexample from metapopulation theory. Journal of Evolutionary Biology 11: 389–401.CrossRefGoogle Scholar
  14. Eshel, I. (1983). Evolutionary and continuous stability. Journal of Theoretical Biology 103: 99–111.CrossRefGoogle Scholar
  15. Ferrière, R. (2000). Adaptive responses to environmental threats: evolutionary suicide, insurance, and rescue. Options Spring 2000, IIASA, Laxenburg, Austria, 12–16.Google Scholar
  16. Geritz, S.A.H., É. Kisdi, G. Meszéna and J.A.J. Metz (1998). Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evolutionary Ecology 12: 35–57.CrossRefGoogle Scholar
  17. Geritz, S.A.H., M. Gyllenberg, F.J.A. Jacobs and K. Parvinen (2002). Invasion dynamics and attractor inheritance. Journal of Mathematical Biology 44: 548–560.CrossRefGoogle Scholar
  18. Geritz, S.A.H., J.A.J. Metz, É. Kisdi and G. Meszéna (1997). Dynamics of adaptation and evolutionary branching. Physical Review Letters 78: 2024–2027.CrossRefGoogle Scholar
  19. Geritz, S.A.H., E. van der Meijden and J.A.J. Metz (1999). Evolutionary dynamics of seed size and seedling competitive ability. Theoretical Population Biology 55: 324–343.CrossRefGoogle Scholar
  20. Gyllenberg, M. and J.A.J. Metz (2001). On fitness in structured metapopulations. Journal of Mathematical Biology 43: 545–560.CrossRefGoogle Scholar
  21. Gyllenberg, M. and K. Parvinen (2001). Necessary and sufficient conditions for evolutionary suicide. Bulletin of Mathematical Biology 63: 981–993.Google Scholar
  22. Gyllenberg, M., K. Parvinen and U. Dieckmann (2002). Evolutionary suicide and evolution of dispersal in structured metapopulations. Journal of Mathematical Biology 45: 79–105.CrossRefGoogle Scholar
  23. Haldane, J.B.S. (1932). The causes of evolution. Longmans, Green & Co. Limited, London.Google Scholar
  24. Hardin, G. (1968). The tragedy of the commons. Science 162: 1243–1248.Google Scholar
  25. Heino, M., J.A.J. Metz and V. Kaitala (1998). The enigma of frequency-dependent selection. Trends in Ecology & Evolution 13: 367–370.Google Scholar
  26. Kisdi, É. (1999). Evolutionary branching under asymmetric competition. Journal of Theoretical Biology 197: 149–162.CrossRefGoogle Scholar
  27. Kisdi, É., F.J.A. Jacobs and S.A.H. Geritz (2001). Red queen evolution by cycles of evolutionary branching and extinction. Selection 2: 161–176.CrossRefGoogle Scholar
  28. Leimar, O. (2001). Evolutionary change and Darwinian demons. Selection 2: 65–72.Google Scholar
  29. Marrow, P., U. Dieckmann and R. Law (1996). Evolutionary dynamics of predator-prey systems: an ecological perspective. Journal of Mathematical Biology 34: 556–578.CrossRefGoogle Scholar
  30. Matsuda, H. (1985). Evolutionarily stable strategies for predator switching. Journal of Theoretical Biology 115: 351–366.Google Scholar
  31. Matsuda, H. and P.A. Abrams (1994a). Runaway evolution to self-extinction under asymmetrical competition. Evolution 48: 1764–1772.Google Scholar
  32. Matsuda, H. and P.A. Abrams (1994b). Timid consumers: self-extinction due to adaptive change in foraging and anti-predator effort. Theoretical Population Biology 45: 76–91.CrossRefGoogle Scholar
  33. Maynard Smith, J. (1976). Evolution and the theory of games. American Scientist 64: 41–45.Google Scholar
  34. Maynard Smith, J. and G.R. Price (1973). The logic of animal conflict. Nature 246: 15–18.Google Scholar
  35. Meszéna, G., É. Kisdi, U. Dieckmann, S.A.H. Geritz and J.A.J. Metz (2001). Evolutionary optimisation models and matrix games in the unified perspective of adaptive dynamics. Selection 2: 193–210.Google Scholar
  36. Metz, J.A.J., S.A.H. Geritz, G. Meszéna, F.J.A. Jacobs and J.S. van Heerwaarden (1996a). Adaptive dynamics, a geometrical study of the consequenses of nearly faithful reproduction. In S.J. van Strien and S.M. Verduyn Lunel (Eds.), Stochastic and Spatial Structures of Dynamical Systems, North-Holland, Amsterdam, 183–231.Google Scholar
  37. Metz, J.A.J. and M. Gyllenberg (2001). How should we define fitness in structured metapopulation models? Including an application to the calculation of ES dispersal strategies. Proceedings of the Royal Society of London B: Biological Sciences 268: 499–508.Google Scholar
  38. Metz, J.A.J., S.D. Mylius and O. Diekmann (1996b). When does evolution optimize? On the relation between types of density dependence and evolutionarily stable life-history parameters. Working paper WP-96-004, IIASA, Laxenburg, Austria.
  39. Metz, J.A.J., R.M. Nisbet and S.A.H. Geritz (1992). How should we define “fitness” for general ecological scenarios? Trends in Ecology & Evolution 7: 198–202.CrossRefGoogle Scholar
  40. Mylius, S.D. and O. Diekmann (2001). The resident strikes back: Invader-induced switching of resident attractor. Journal of Theoretical Biology 211: 297–311.CrossRefGoogle Scholar
  41. Parvinen, K. (1999). Evolution of migration in a metapopulation. Bulletin of Mathematical Biology 61: 531–550.Google Scholar
  42. Parvinen, K., U. Dieckmann and M. Heino (to appear in 2006). Function-valued adaptive dynamics and the calculus of variations. Journal of Mathematical Biology. DOI: 10.1007/s00285-005-0329-3.Google Scholar
  43. Ricker, W.E. (1954). Stock and recruitment. Journal of the Fisheries Research Board of Canada 11, 559–623.Google Scholar
  44. Rosenzweig, M.L. (1973). Evolution of the predator isocline. Evolution 27: 84–94.Google Scholar
  45. Rosenzweig, M.L. (1977). Aspects of biological exploitation. The Quarterly Review of Biology 52: 371–380.Google Scholar
  46. Taylor, P.D. (1989). Evolutionary stability in one-parameter models under weak selection. Theoretical Population Biology 36: 125–143.CrossRefGoogle Scholar
  47. Van Tienderen, P.H. and G. De Jong (1986). Sex ratio under the haystack model: Polymorphism may occur. Journal of Theoretical Biology 122: 69–81.Google Scholar
  48. Webb, C. (2003). A complete classification of darwinian extinction in ecological interactions. American Naturalist 161: 181–205.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TurkuFinland
  2. 2.Turku Centre for Computer Science TUCSFinland

Personalised recommendations