Acta Biotheoretica

, Volume 53, Issue 3, pp 191–216 | Cite as

An Evolutionary Scenario For The Origin Of Pentaradial Echinoderms—Implications From The Hydraulic Principles Of Form Determination

  • Michael GudoEmail author


The early evolutionary history of echinoderms was reconstructed on the basis of structural-functional considerations and application of the quasi-engineering approach of ‘Konstruktions-Morphologie’. According to the presented evolutionary scenario, a bilaterally symmetrical ancestor, such as an enteropneust-like organism, became gradually modified into a pentaradial echinoderm by passing through an intermediate pterobranch-like stage. The arms of a pentaradial echinoderm are identified as hydraulic outgrowths from the central coelomic cavity of the bilateral ancestor which developed due to a shortening of the body in length but widening in the diameter. The resulting pentaradial symmetry is a consequence of mechanical laws that dictate minimal contact surface areas among hydraulic pneumatic entities. These developed in the coelomic cavity (metacoel) in the bilaterally symmetrical ancestor, when from the already U-shaped mesentery with the intestinal tract two additional U-shaped bows developed directly or subsequently. During the subsequent development tensile chords of the mesentery ‘sewed’ the gut with the body wall first in three and secondly in five ‘seams’. During the direct development five ‘seams’ between tensile chords and body wall developed straightly. These internal tensile chords subdivide the body coelom into five hydraulic subsystems (‘pneus’), which eventually arrange in a pentaradial pattern. The body could then enlarge only between the tensile chords, which means that five hydraulic bulges developed. These bulges initially supported the tentacles and finally each of them enclosed the tentacle until only the feather-like appendages of the tentacles projected over the surface. The tentacles with their feathers were transformedinto the ambulacral system, and the bulges become the arms. These morphological transformations were accompanied and partly determined by specific histological modifications, such as the development of mutable connective tissues and skeletal elements that fused to ossicles and provided shape stabilization in form of a calcareous skeleton in the body wall. The organism resulted was an ancestral echinoderm (‘Ur-Echinoderm’) with an enlarged metacoel, stabilized by hydraulic pressure working againsta capsule of mutable connective tissue, skeletal elements and longitudinal muscles. In regard to these reconstructions, the body structure of echinoderms can be understood as a hydraulic skeletal capsule.

Key Words

hydraulic principle pentaradial echinoderms engineering morphology body construction Echinodermata Hemichordata Bauplan invertebrate evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adoutte, A., G. Balavoine, N. Lartillot and de R. Rosa (1999). The end of the intermediate taxa? Trends in Genetics 15: 104–108.CrossRefGoogle Scholar
  2. Adoutte, A., G. Balavoine, N. Lartillot, O. Lespinet, B. Prudhomme and de R. Rosa (2000). The new animal phylogeny: Reliability and implications. Proceedings of the National Academie of Science, USA 97: 4453–4456.Google Scholar
  3. Balavoine, G. and A. Adoutte (2003). The Segmented Urbilateria: A Testable Scenario. Integrative and Comparative Biology 43: 137–147.Google Scholar
  4. Balavoine, G., de R. Rosa, and A. Adoutte (2002). Hox clusters and bilaterian phylogeny. Molecular Phylogenetics and Evolution 24: 366–373.CrossRefGoogle Scholar
  5. Beaver, H.H., K.E. Caster, J.W. Durham, R.O. Fay, H.B. Fell, R.V.B.M.D. Kesling, J.R.C. Moore, G. Ubaghs and J. Wanner (1967a). Treatise on Invertebrate Paleontology—Part S: Echinodermata 1, Volume 1. The Geological Society of America, Inc. & The University of Kansas. Kansas, Lawrence.Google Scholar
  6. Beaver, H.H., K.E. Caster, J.W. Durham, R.O. Fay, H.B. Fell, R. V. Kesling, D.B. Macurda, J.R.C. Moore, G. Ubaghs and J. Wanner (1967b). Treatise on Invertebrate Paleontology—Part S: Echinodermata 1, Volume 2. The Geological Society of America, Inc. & The University of Kansas. Kansas, Lawrence.Google Scholar
  7. Boardmann, R.S., A.H. Cheetham and A.J. Rowell (1987). Fossil Invertebrates. Blackwell. Palo Alto, Oxford, London, Edinburgh, Boston, Melbourne.Google Scholar
  8. Bock, W.J. (1991). Explanations in Konstruktionsmorphologie and evolutionary morphology. In: N. Schmidt-Kittler and K.P. Vogel (Eds.), Constructional morphology and evolution, Springer, Heidelberg, pp. 9–29.Google Scholar
  9. Bonik, K. and W.F. Gutmann (1978). Die Biotechnik der Doppel-Hydraulik (Chorda-Sklerocoelen-Myomeren-System) bei den Acraniern. Senckenbergiana biologica 58: 275–286.Google Scholar
  10. Bonik, K., W.F. Gutmann and D.S. Peters (1977). Optimierung und Ökonomisierung im Kontext der Evolutionstheorie und phylogenetischer Rekonstruktionen. Acta Anatomica 26: 75–119.Google Scholar
  11. Bromham, L. (2003). What can DNA Tell us About the Cambrian Explosion. Integrative and Comparative Biology 43: 148–156.Google Scholar
  12. Bromham, L.D. and B.M. Degnan (1999). Hemichordates and deuterostome evolution: robust molecular phylogenetic support for a hemichordate+echinoderm clade. Evolution and Development 1: 166–171.CrossRefGoogle Scholar
  13. Bulman, O.M.B. (1955). Graptolithina, with sections on Enteropneusta and Pterobranchia, Part V of Treatise on invertebrate paleontology, Moore, R.C. (Ed). xvii.Google Scholar
  14. Cameron, C.B., J.R. Garey and B.J. Swalla (2000). Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. Proceedings of the National Academie of Science, USA 97: 4469–4474.Google Scholar
  15. Clark, R.B. (1964). Dynamics in the metazoan evolution. The origin of the coelom and segments. Clarendon. Oxford.Google Scholar
  16. Dafni, J. (1984). Effect of mechanical stress on the calcification pattern in regular echinoid skeletal plates. Proceedings of the 5th International Echinoderm Conference, pp. 233–236.Google Scholar
  17. David, B. and R. Mooi (1998). Major events in the evolution of echinoderms viewed by the light of embryology. In: R. Mooi and M. Telford (Eds.), Echinoderms: San Francisco, Balkema, Rotterdam, pp. 21–28.Google Scholar
  18. David, B. and R. Mooi (1999). Comprendre les échinodermes: la contribution du modèle extraxial-axial. Bulletin de la Societée géologique de France 170: 91–101.Google Scholar
  19. Eaton, T.H. (1970). The stem-tail problem and the ancestry of chordates. Journal of Paleontology 44: 969–979.Google Scholar
  20. Erlinger, R., U. Welsch and J.E. Scott (1993). Ultrastructural and biochemical observations on proteoglycans and collagen in the mutable connective tissue of the feather star Antedon bifida (Echinodermata, Crinoidea). Journal of Anatomy 183: 1–11.Google Scholar
  21. Furlong, R.F. and P.W.H. Holland (2002). Bayesian phylogenetic analysis supports monophyly of ambulacraria and of cyclostomes. Zoological Science 19: 593–599.CrossRefGoogle Scholar
  22. Garstang, W. (1894). Preliminary note on a new theory of the phylogeny of Chordata. Zoologischer Anzeiger 27: 122–125.Google Scholar
  23. Gil Cid, D., F. Arroyo, R. Lara and A. Torices (2003). Biodiversity and biostratigraphy of Spanish Cambrian-Ordovician echinoderms. In J.-P. Féral and B. David (Eds.), Echinoderm Research 2001, Balkema, Lisse, Abingdon, Exton, Tokyo, pp. 77–85.Google Scholar
  24. Gislén, T. (1930). Affinities between the echinodermata, enteropneusta and chordonia. Zoologiska bidrag fran Uppsala 12: 199–304.Google Scholar
  25. Grobben, K. (1923). Theoretische Erörterungen betreffend die Phylogenetische Ableitung der Echinodermen. Sitzungsberichte der mathematisch-naturwissenschaftlichen Klasse, Abteilung I 132: 263–290.Google Scholar
  26. Gudo, M. (1997). Ist die Konstruktionsmorphologie ein aktualistisches Prinzip der Paläontologie? Courier Forschungsinstitut Senckenberg 201: 145–160.Google Scholar
  27. Gudo, M. (2002). The development of the critical theory of evolution: The scientific career of Wolfgang F. Gutmann. Theory of Biosciences 121: 101–137.Google Scholar
  28. Gudo, M. (2004). Die ‘hydraulische Skelettkapsel’ der Stachelhäuter (Echinodermen). Natur und Museum 134: 174–188.Google Scholar
  29. Gudo, M. (2005). Körperkonstruktion und evolutionäre Trends fossiler Echinodermen (Homalozoa, Bastoidea, Edrioasteroidea). Senckenbergiana lethaea 85(1): 39–62.Google Scholar
  30. Gudo, M. and F. Dettmann (2005). Evolutionsmodelle für die Entstehung der Echinodermen. Paläontologische Zeitschrift 79(3): 305–338.Google Scholar
  31. Guntau, M. (1993). Theorie und Methode des Aktualismus. Der historische Vergleich in der Naturforschung. In M. Weingarten and W.F. Gutmann (Eds.), Geschichte und Theorie des Vergleichs in den Biowissenschaften, Kramer, Frankfurt am Main, pp. 175–186.Google Scholar
  32. Gutmann, W.F. (1969). Acranier und Hemichordaten, ein Seitenast der Chordaten. Zoologischer Anzeiger 182: 1–26.Google Scholar
  33. Gutmann, W.F. (1970). Die Entstehung des Muskelapparates der Hemichordaten. Zeitschrift für Zoologische Systematik und Evolutionsforschung 8: 139–154.Google Scholar
  34. Gutmann, W.F. (1971). Zu Bau und Leistung von Tierkonstruktionen 14. Was ist urtümlich an Branchiostoma? Natur und Museum 101: 340–356.Google Scholar
  35. Gutmann, W.F. (1972). Die Hydroskelett-Theorie. Aufsätze und Reden der Senckenbergischen Naturforschenden Gesellschaft 21: 1–91.Google Scholar
  36. Gutmann, W.F. (1973). Ein Paradigma für die phylogenetische Rekonstruktion—Die Entstehung der Hemichordaten. Courier Forschungsinstitut Senckenberg 9: 1–28.Google Scholar
  37. Gutmann, W.F. (1981). Relationships between invertebrate phyla based on functional-mechanical analysis of the hydrostatic skeleton. American Zoologist 21: 63–81.Google Scholar
  38. Gutmann, W. F. (1985). The hydraulic principles of the chordate and vertebrate bauplan. Fortschritte der Zoologie 30: 23–26.Google Scholar
  39. Gutmann, W. F. (1988). The hydraulic principle. American Zoologist 28: 257–266.Google Scholar
  40. Gutmann, W. F. (1991). Constructional principles and the quasi-experimental approach to organisms. In N. Schmidt-Kittler and K.P. Vogel (Eds.), Constructional morphology and evolution, Springer, Berlin, Heidelberg, New York, Tokyo, pp. 91–112.Google Scholar
  41. Gutmann, W. F. (1993). Organismic machines—The hydraulic principle and the evolution of living constructions. In K. Kull and T. Tiivel (Eds.), Lectures in theoretical biology—The Second Stage, Estonian Academy of Sciences, Tallinn, pp. 171–188.Google Scholar
  42. Gutmann, W.F. and K. Bonik (1979). Detaillierung des Acranier-und Enteropneusten-Modells. Senckenbergiana biologica 59: 325–363.Google Scholar
  43. Halanych, K.M. (1995). The phylogenetic position of the pterobranch hemichordates based on 18S rDNA sequence data. Molecular Phylogenetics and Evolution 4: 72–76.CrossRefGoogle Scholar
  44. Hargittai, I. and M. Hargittai (1996). Über die Anwendbarkeit des Symmetrie-Konzeptes in der modernen chemischen Forschung. In W. Hahn and P. Waibl (Eds.), Evolutionäre Symmetrietheorie—Selbstorganisation und dynamische Systeme, Hirzel, Stuttgart, pp. 231–240.Google Scholar
  45. Harrison, F.W. and E.E. Ruppert (1997). Microscopic anatomy of invertebrates, Vol. 15, Hemichordata, chaetognatha, and the invertebrate chordates. Wiley-Liss. New York; Chichester.Google Scholar
  46. Hart, M.W. (2002). Life history evolution and comparative developmental biology of echinoderms. Evolution & Development 4: 62–71.Google Scholar
  47. Haude, R. (1993). Fossil holothurians: Constructional morphology of the sea cucumber, and the origin of the calcerous ring. Proceedings of the 8th International Echinoderm Conference, pp. 517–522.Google Scholar
  48. Haude, R. (2002). Origin of holothurians (Echinodermata) derived by constructional morphology. Mitteilungen des Zoologischen Museums Berlin, Geowissenschaftliche Reihe 5: 141–153.Google Scholar
  49. Hill, R.B. (2001). Role of Ca2+ in excitation–contraction coupling in echinoderm muscle: comparison with role in other tissues. The Journal of Experimental Biology 204: 897–908.Google Scholar
  50. Hotchkiss, F.H.C. (1997). A “rays-as-appendages” model for the origin of pentamerism in echinoderms. Paleobiology 24: 200–214.Google Scholar
  51. Hotchkiss, F.H.C. (1998). Discussion on pentamerism: The five-part pattern of Stromatocystis, Asterozoa, and Echinozoa. In R. Mooi and M. Telford (Eds.), Echinoderms: San Franzisco, Balkema, Rotterdam, pp. 37–42.Google Scholar
  52. Huxley, J. (1957). The three types of evolutionary process. Nature 180: 454–455.Google Scholar
  53. Hyman, L.H. (1955). The Invertebrates: Echinodermata. McGraw Hill Book Comp. New York.Google Scholar
  54. Janies, D. (2001). Phylogenetic relationships of extant echinoderm classes. Canadian Journal of Zoology 79: 1232–1250.CrossRefGoogle Scholar
  55. Jefferies, R.P.S. (1991). Two types of bilateral symmetry in the Metazoa: chordate and bilaterian. Ciba Found Symposium 162: 94–120 & 121–127.Google Scholar
  56. Jefferies, R.P.S., N.A. Brown and P.E.J. Daley (1996). The early phylogeny of chordates and echinoderms and the origin of chordate left-right asymmetry and bilateral symmetry. Acta Zoologica 77: 101–122.CrossRefGoogle Scholar
  57. Johnson, A.S., O. Ellers, J. Lemire, M. Minor and H.A. Leddy (2002). Sutural loosening and skeletal flexibility during growth: determination of drop-like shapes in sea urchins. Proceedings of the Royal Society of London. Series B: Biological Sciences 269: 215–220.Google Scholar
  58. Jollie, M. (1962). Chordate Morphology. Chapman & Hall. London.Google Scholar
  59. Kerr, A.M. and J. Kim (1999). Bi-Penta-Bi-Decaradial Symmetry: A Review of Evolutionary and Developmental Trends in Holothuroidea (Echinodermata). Journal of Experimental Zoology 285: 93–103.CrossRefGoogle Scholar
  60. Landeira-Fernandez, A. (2001). Ca2+ transport by the sarcoplasmic reticulum Ca2+ -ATPase in sea cucumber (Ludwigothurea grisea) muscle. The Journal of Experimental Biology 204: 909–921.Google Scholar
  61. Lovén, S. (1874). Études sur les echnoidées. Kongelige Svenska Vetenskaps-Akademiens Handlingar (n. ser.) 11: 1–91 + pls. 1–53.Google Scholar
  62. Lowe, C.J. and G.A. Wray (1997). Radical alterations in the roles of homeobox genes during echinoderm evolution. Nature 389: 718–21.Google Scholar
  63. Mallatt, J. and C.J. Winchell (2002). Testing the new animal phylogeny: first use of combined large-subunit and small-subunit rRNA gene sequences to classify the protostomes. Molecular Biology and Evolution 19: 289–301.Google Scholar
  64. Mayer, G. and T. Bartholomaeus (2003). Ultrastructure of the stomochord and the heart-glomerulus complex in Rhabdopleura compacta (Pterobranchia): phylogenetic implications. Zoomorphology 122: 125–133.CrossRefGoogle Scholar
  65. McCain, R.E. and R.D. McClay (1994). The establishment of bilateral asymmetry in sea urchin embryos. Development 120: 395–404.Google Scholar
  66. Metschnikoff, V.E. (1881). Über die systematische Stellung von Balanoglossus. Zoologischer Anzeiger 4: 139–157.Google Scholar
  67. Morris, V.B. (1999). Bilateral homologues in echinoderms and a predictive model of the bilateral echinoderm ancestor. Biological Journal of the Linnean Society 66: 293–303.CrossRefGoogle Scholar
  68. Müller, G.B. (2003). Embryonic motility: environmental influences and evolutionary innovation. Evolution & Development 5: 56–60.Google Scholar
  69. Nachtigall, W. and U. Philippi (1996). Functional morphology of regular echinoid tests (Echinodermata, Echinoida): a finite element study. Zoomorphology 116: 35–50.Google Scholar
  70. Newell, G.E. (1951). The homology of the stomochord of the Enteropneusta. Proceedings of the Zoological Society, pp. 741–746.Google Scholar
  71. Nezlin, L.P. (2000). Tornaria of hemichordates and other dipleurula-type larvae: a comparison. Journal for Zoological Systematics and Evolutionary Research 38: 149–156.Google Scholar
  72. Nichols, D. (1962). Echinoderms. Hutchinson. London.Google Scholar
  73. Nichols, D. (1967). The origin of echinoderms. Symposia of the Zoological Society of London 20: 209–229.Google Scholar
  74. Otto, F. (1977). Wachsende und sich teilende Pneus. Mitteilungen des Institutes für leichte Flächentragwerke der Universität Stuttgart (IL) 9: 22–97.Google Scholar
  75. Pantin, C.F.A. (1951). Organic design. Advancement of Science 8: 138–150.Google Scholar
  76. Peters, D.S. (2002). Anagenesis of Early Birds reconsidered. Senckenbergiana lethaea 82: 347–354.Google Scholar
  77. Peterson, K.J. (2004). Isolation of Hox and Parahox genes in the hemichordate Ptychodera flava and the evolution of deuterostome Hox genes. Molecular Phylogenetics and Evolution 31: 1208–1215.CrossRefGoogle Scholar
  78. Peterson, K.J., C. Arenas-Mena and E.H. Davidson (2000). The A/P axis in echinoderm ontogeny and evolution: evidence from fossils and molecules. Evolution and Development 2: 93–101.CrossRefGoogle Scholar
  79. Peterson, K. J. and D.J. Eernisse (2001). Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evolution & Development 3: 170–205.CrossRefGoogle Scholar
  80. Schmidt-Kittler, N. and K.P. Vogel (1991). Constructional Morphology and Evolution. Springer. Berlin, Heidelberg, New York, Tokyo.Google Scholar
  81. Seilacher, A. (1973). Fabricational noise in adaptive morphology. Systematic Zoology 22: 451–465.Google Scholar
  82. Shu, D.G., S.C. Morris, J. Han, Z.F. Zhang and J.N. Liu (2004). Ancestral echinoderms from the Chengjiang deposits of China. Nature 430: 422–428.Google Scholar
  83. Smith, M.J., A. Arndt, S. Gorski and E. Fajber (1993). The phylogeny of echinoderm classes based on mitochondrial gene arrangements. Journal of Molecular Evolution 36: 545–54.CrossRefGoogle Scholar
  84. Takacs, C.M., V.N. Moy and K.J. Peterson (2002). Testing putative hemichordate homologues of the chordate dorsal nervous system and endostyle: expression of NK2.1 (TTF-1) in the acorn worm Ptychodera flava (Hemichordata, Ptychoderidae). Evolution & Development 4: 405–417.Google Scholar
  85. Taylor, J.R. and W.M. Kier (2003). Switching skeletons: hydrostatic support in molting crabs. Science 301: 209–210.CrossRefGoogle Scholar
  86. Trotter, J.A., K.E. Kadler and D.F. Holmes (2000). Echinoderm Collagen Fibrils Grow by Surface Nucleation-and-Propagation from Both Centers and Ends. journal of molecular biology 300: 531–540.CrossRefGoogle Scholar
  87. Trotter, J.A., F.A. Thurmond and T.J. Koob (1994). Molecular structure and functional morphology of echinoderm collagen fibrils. Cell & Tissue Research 275: 451–458.Google Scholar
  88. Turbeville, J.M., J.R. Schulz and R.A. Raff (1994). Deuterostome phylogeny and the sister group of the chordates: evidence from molecules and morphology. Molecular Biology and Evolution 11:648–655.Google Scholar
  89. Vogel, K. (1979). Efficiency of biological constructions and its relation to selection and rate of evolution (general remarks). Palaeogeography, Palaeoclimatology, Palaeoecology 28: 315–319.CrossRefGoogle Scholar
  90. Vogel, K.P. (1989a). Constructional morphology and the reconstruction of phylogeny. Abhandlungen des Naturwissenschaftlichen Vereins 28:255–264.Google Scholar
  91. Vogel, K.P. (1989b). Konstruktionsmorphologie und Rekonstruktion der Stammesgeschichte, K. Edlinger (Ed.), Form und Funktion Ihre stammesgeschichtlichen Grundlagen, WUV, Wien.Google Scholar
  92. Vogel, K.P. (1991a). Concepts of Constructional Morphology, N. Schmidt-Kittler and K. Vogel (Eds.), Constructional Morphology and Evolution, Heidelberg, 55–68.Google Scholar
  93. Vogel, K.P. (1991b). Konstruktionsmorphologie: Ein Schlüssel zum Verständnis der Biologischen Evolution. Sitzungsberichte der wissenschaftlichen Gesellschaft an der Johann Wolfgang Goethe—Universität Frankfurt am Main 28: 1–56.Google Scholar
  94. Vogel, K.P. and W.F. Gutmann (1981). Zur Entstehung von Metazoen-Skeletten an der Wende von Präkambrium zum Kambrium. Festschrift der wissenschaftlichen Gesellschaft der Johann Wolfgang Goethe—Universität Frankfurt am Main: 517–537.Google Scholar
  95. Vogel, K.P. and W.F. Gutmann (1988). Protist skeletons — biomechanical preconditions and constructional utilization. Senckenbergiana lethaea 69: 171–188.Google Scholar
  96. Vogel, K.P. and W.F. Gutmann (1989). Organismic Autonomy in Biomineralization Processes. In R.E. Crick (Ed.), Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals, Plenum, New York, pp. 45–56.Google Scholar
  97. Wada, H. and N. Satoh (1994). Phylogenetic relationships among extant classes of echinoderms, as inferred from sequences of 18S rDNA, coincide with relationships deduced from the fossil record. Journal of Molecular Evolution 38: 41–49.CrossRefGoogle Scholar
  98. Welsch, U. and T. Heinzeller (1994). Crinoidea. In Harrison, F.W. and E.E. Rupper (Eds.), Microscopic Anatomy of Invertebrates, Wiley, New York, pp. 9–148.Google Scholar
  99. Winchell, C.J., J. Sullivan, C.B. Cameron, B.J. Swalla and J. Mallatt (2002). Evaluating hypotheses of deuterostome phylogeny and chordate evolution with new LSU and SSU ribosomal DNA data. Molecular Biology and Evolution 19: 762–776.Google Scholar
  100. Wray, G.A. (1997). Echinoderms, S.F. Gilbert and A.M. Raunio (Eds.), Embryology: Constructing the Organism, Sinauer, Sunderland.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Morphisto-Evolutions-forschung und Anwendung GmbHFrankfurt am MainGermany

Personalised recommendations