Acta Biotheoretica

, Volume 53, Issue 3, pp 181–190

Correlating Velocity Patterns With Spatial Dynamics In Glioma Cell Migration



Highly malignant neuroepithelial tumors are known for their extensive tissue invasion. Investigating the relationship between their spatial behavior and temporal patterns by employing detrended fluctuation analysis (DFA), we report here that faster glioma cell motility is accompanied by both greater predictability of the cells' migration velocity and concomitantly, more directionality in the cells' migration paths. Implications of this finding for both experimental and clinical cancer research are discussed.

Key Words

Glioma cell migration Detrended fluctuations analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Buldyrev, S.V., A.L. Goldberger, S. Havlin, R.N. Mantegna, M.E. Matsa, C.K. Peng, M. Simons and H.E. Stanley (1995). Long-range correlation properties of coding and noncoding DNA sequences: GenBank analysis. Phys Rev E 51: 5084–5091.CrossRefGoogle Scholar
  2. CBTRUS (2002). Statistical Report: Primary Brain Tumors in the United States, 1995–1999. The Central Brain Tumor Registry of the United States (
  3. Chicoine, M.R. and D.L. Silbergeld (1995). The in vitro motility of human gliomas increases with increasing grade of malignancy. Cancer 75: 2904–2909.Google Scholar
  4. Demuth, T., N.J. Hopf, O. Kempski, D. Sauner, M. Herr, A. Giese and A. Perneczky. (2001). Migratory activity of human glioma cell lines in vitro assessed by continuous single cell observation. Clin Exp Metastasis 18: 589–597.Google Scholar
  5. Ekstrand, A.J., C.D. James, W.K. Cavenee, B. Seliger, R.F. Pettersson and V.P. Collins (1991). Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res. 51: 2164–2172.Google Scholar
  6. Hegedus, B., A. Czirok, I. Fazekas, T. Babel, E. Madarasz and T. Vicsek. (2000). Locomotion and proliferation of glioblastoma cells in vitro: statistical evaluation of videomicroscopic observations. J Neurosurg 92: 428–434.Google Scholar
  7. Lund-Johansen, M., R. Bjerkvig, P.A. Humphrey, S.H. Bigner, D.D. Bigner and O.D. Laerum (1990). Effect of epidermal growth factor on glioma cell growth, migration, and invasion in vitro. Cancer Res. 50: 6039–6044.Google Scholar
  8. Mansury, Y. and T.S. Deisboeck (2004). Simulating the time series of a selected gene expression profile in an agent-based tumor model. Physica D 196: 193–204.Google Scholar
  9. Nazzaro, J.M. and E.A. Neuwelt (1990). The role of surgery in the management of supratentorial intermediate and high-grade astrocytomas in adults. J Neurosurg. 73: 331–344.Google Scholar
  10. Okada, Y., E.E. Hurwitz, J.M. Esposito, M.A. Brower, C.L. Nutt and D.N. Louis. (2003). Selection pressures of TP53 mutation and microenvironmental location influence epidermal growth factor receptor gene amplification in human glioblastomas. Cancer Res. 63: 413–416.Google Scholar
  11. Peng, C.K., S.V. Buldyrev, A.L. Goldberger, S. Havlin, M. Simons and H.E. Stanley. (1993). Finite-size effects on long-range correlations: Implications for analyzing DNA sequences. Phys Rev E 47: 3730–3733.CrossRefGoogle Scholar
  12. Peng, C.K., S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley and A.L. Goldberger. (1994). Mosaic organization of DNA nucleotides. Phys Rev E 49: 1685–1689.CrossRefGoogle Scholar
  13. Silbergeld, D.L. and M.R. Chicoine (1997). Isolation and characterization of human malignant glioma cells from histologically normal brain. J Neurosurg. 86: 525–531.Google Scholar
  14. Stanley, H.E., L.A.N. Amaral, A.L. Goldberger, S. Havlin, P.C. Ivanov and C.K. Peng. (1999). Statistical physics and physiology: Monofractal and multifractal approaches. Physica A 270: 309–324.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Thomas S. Deisboeck
    • 1
    • 2
    • 4
  • Tim Demuth
    • 3
  • Yuri Mansury
    • 1
    • 2
  1. 1.Complex Biosystems Modeling Laboratory, HST-Biomedical Engineering CenterMassachusetts Institute of TechnologyCambridge
  2. 2.Harvard-MIT (HST) Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalMassachusetts General HospitalCharlestown
  3. 3.Neurogenomics DivisionTranslational Genomics Research InstitutePhoenix
  4. 4.Complex Biosystems Modeling Laboratory, Harvard-MIT (HST) Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General Hospital-EastCharlestown

Personalised recommendations