\(Z\)-Eigenvalue Localization Sets for Even Order Tensors and Their Applications
- 20 Downloads
Abstract
Firstly, a new Geršgorin-type \(Z\)-eigenvalue localization set with parameters for even order tensors is presented. As an application, some sufficient conditions for the positive (semi-)definiteness of even order real symmetric tensors are obtained. Secondly, by selecting appropriate parameters an optimal set is obtained and proved to be tighter than some existing results. Thirdly, as another application, new upper bounds for the \(Z\)-spectral radius of even order weakly symmetric nonnegative tensors are obtained. Finally, numerical examples are given to verify the theoretical results.
Keywords
Nonnegative tensors \(Z\)-eigenvalues \(Z\)-spectral radius Localization sets Positive definitenessMathematics Subject Classification (2010)
15A18 15A42 15A69Notes
Acknowledgements
The authors are grateful to the referees and Editors-in-Chief John King, Benoît Perthame for their comments and suggestions. This work is supported by Science and Technology Projects of Education Department of Guizhou Province (Grant No. KY[2015]352); Science and Technology Top-notch Talents Support Project of Education Department of Guizhou Province (Grant No. QJHKYZ [2016]066); National Natural Science Foundations of China (Grant No. 11501141) and Natural Science Foundation of Guizhou Minzu University.
References
- 1.Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 4, 1302–1324 (2005) MathSciNetCrossRefGoogle Scholar
- 2.Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach. In: CAMSAP’05: Proceeding of the IEEE International Workshop on Computational Advances in MultiSensor Adaptive Processing, pp. 129–132 (2005) Google Scholar
- 3.Qi, L., Chen, H., Chen, Y.: Tensor Eigenvalues and Their Applications. Springer, Singapore (2018) CrossRefGoogle Scholar
- 4.Hsu, J.C., Meyer, A.U.: Modern Control Principles and Applications. McGraw-Hill, New York (1968) zbMATHGoogle Scholar
- 5.Bose, N.K., Kamat, P.S.: Algorithm for stability test of multidimensional filters. IEEE Trans. Acoust. Speech Signal Process. ASSP. 22, 307–314 (1974) CrossRefGoogle Scholar
- 6.Bose, N.K., Newcomb, R.W.: Tellegons theorem and multivariate realizability theory. Int. J. Electron. 36, 417–425 (1974) CrossRefGoogle Scholar
- 7.Anderson, B.D.O., Bose, N.K., Jury, E.I.: Output feedback stabilization and related problems-solutions via decision methods. IEEE Trans. Autom. Control AC20, 53–66 (1975) MathSciNetCrossRefGoogle Scholar
- 8.Cui, L.B., Li, M.H., Song, Y.: Preconditioned tensor splitting iterations method for solving multi-linear systems. Appl. Math. Lett. 96, 89–94 (2019) MathSciNetCrossRefGoogle Scholar
- 9.Li, C., Li, Y.: An eigenvalue localization set for tensors with applications to determine the positive (semi-)definitenss of tensors. Linear Multilinear Algebra 64(4), 587–601 (2016) MathSciNetCrossRefGoogle Scholar
- 10.Li, C., Li, Y., Kong, X.: New eigenvalue inclusion sets for tensors. Numer. Linear Algebra Appl. 21, 39–50 (2014) MathSciNetCrossRefGoogle Scholar
- 11.Li, C., Chen, Z., Li, Y.: A new eigenvalue inclusion set for tensors and its applications. Linear Algebra Appl. 481, 36–53 (2015) MathSciNetCrossRefGoogle Scholar
- 12.Li, C., Zhou, J., Li, Y.: A new Brauer-type eigenvalue localization set for tensors. Linear Multilinear Algebra 64(4), 727–736 (2016) MathSciNetCrossRefGoogle Scholar
- 13.Li, C., Jiao, A., Li, Y.: An \(S\)-type eigenvalue localization set for tensors. Linear Algebra Appl. 493, 469–483 (2016) MathSciNetCrossRefGoogle Scholar
- 14.He, J., Liu, Y., Xu, G.: \(Z\)-eigenvalues-based sufficient conditions for the positive definiteness of fourth-order tensors. Bull. Malays. Math. Sci. Soc. (2019). https://doi.org/10.1007/s40840-019-00727-7 CrossRefGoogle Scholar
- 15.Zhao, J.: \(E\)-eigenvalue localization sets for fourth-order tensors. Bull. Malays. Math. Sci. Soc. (2019). https://doi.org/10.1007/s40840-019-00768-y CrossRefGoogle Scholar
- 16.Wang, G., Zhou, G., Caccetta, L.: \(Z\)-eigenvalue inclusion theorems for tensors. Discrete Contin. Dyn. Syst., Ser. B 22, 187–198 (2017) MathSciNetzbMATHGoogle Scholar
- 17.Zhao, J.: A new \(Z\)-eigenvalue localization set for tensors. J. Inequal. Appl. 2017, 85 (2017) MathSciNetCrossRefGoogle Scholar
- 18.Zhao, J., Sang, C.: Two new eigenvalue localization sets for tensors and theirs applications. Open Math. 16, 1267–1276 (2017) MathSciNetzbMATHGoogle Scholar
- 19.Wang, Y.N., Wang, G.: Two \(S\)-type \(Z\)-eigenvalue inclusion sets for tensors. J. Inequal. Appl. 2017, 152 (2017) MathSciNetCrossRefGoogle Scholar
- 20.Sang, C.: A new Brauer-type Z-eigenvalue inclusion set for tensors. Numer. Algorithms 80, 781–794 (2019) MathSciNetCrossRefGoogle Scholar
- 21.Merris, R.: Combinatorics, 2nd edn. Wiley, New York (2003) CrossRefGoogle Scholar
- 22.Marsli, R., Hall, F.J.: On bounding the eigenvalues of matrices with constant row-sums. Linear Multilinear Algebra 67(4), 672–684 (2019) MathSciNetCrossRefGoogle Scholar
- 23.Kofidis, E., Regalia, P.A.: On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23, 863–884 (2002) MathSciNetCrossRefGoogle Scholar
- 24.Lathauwer, L.D., Moor, B.D., Vandewalle, J.: On the best rank-1 and rank-(\(R _{1},R_{2},\ldots ,R_{N}\)) approximation of higer-order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324–1342 (2000) MathSciNetCrossRefGoogle Scholar
- 25.Zhang, T., Golub, G.H.: Rank-one approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 23(2), 534–550 (2001) MathSciNetCrossRefGoogle Scholar
- 26.Bloy, L., Verma, R.: On computing the underlying fiber directions from the diffusion orientation distribution function. In: Medical Image Computing and Computer-Assisted Intervention, vol. 5241, pp. 1–8. Springer, Berlin (2008) Google Scholar
- 27.Qi, L., Yu, G., Wu, E.X.: Higher order positive semidefinite diffusion tensor imaging. SIAM J. Imaging Sci. 3(3), 416–433 (2010) MathSciNetCrossRefGoogle Scholar
- 28.Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32(4), 1095–1124 (2011) MathSciNetCrossRefGoogle Scholar
- 29.Qi, L.: Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines. J. Symb. Comput. 41, 1309–1327 (2006) MathSciNetCrossRefGoogle Scholar
- 30.Devore, R.A., Temlyakov, V.N.: Some remarks on greedy algorithms. Adv. Comput. Math. 5, 173–187 (1996) MathSciNetCrossRefGoogle Scholar
- 31.Falco, A., Nouy, A.: A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart-Young approach. J. Math. Anal. Appl. 376, 469–480 (2011) MathSciNetCrossRefGoogle Scholar
- 32.Wang, Y., Qi, L.: On the successive supersymmetric rank-1 decomposition of higher-order supersymmetric tensors. Numer. Linear Algebra Appl. 14, 503–519 (2007) MathSciNetCrossRefGoogle Scholar
- 33.Ammar, A., Chinesta, F., Falcó, A.: On the convergence of a greedy rank-one update algorithm for a class of linear systems. Arch. Comput. Methods Eng. 17, 473–486 (2010) MathSciNetCrossRefGoogle Scholar
- 34.Qi, L.: The best rank-one approximation ratio of a tensor space. SIAM J. Matrix Anal. Appl. 32(2), 430–442 (2011) MathSciNetCrossRefGoogle Scholar
- 35.Liu, Q., Li, Y.: Bounds for the \(Z\)-eigenpair of general nonnegative tensors. Open Math. 14, 181–194 (2016) MathSciNetCrossRefGoogle Scholar
- 36.Chang, K.C., Pearson, K.J., Zhang, T.: Some variational principles for \(Z\)-eigenvalues of nonnegative tensors. Linear Algebra Appl. 438, 4166–4182 (2013) MathSciNetCrossRefGoogle Scholar
- 37.Song, Y., Qi, L.: Spectral properties of positively homogeneous operators induced by higher order tensors. SIAM J. Matrix Anal. Appl. 34, 1581–1595 (2013) MathSciNetCrossRefGoogle Scholar
- 38.Li, W., Liu, D., Vong, S.-W.: \(Z\)-eigenpair bounds for an irreducible nonnegative tensor. Linear Algebra Appl. 483, 182–199 (2015) MathSciNetCrossRefGoogle Scholar
- 39.He, J.: Bounds for the largest eigenvalue of nonnegative tensors. J. Comput. Anal. Appl. 20, 1290–1301 (2016) MathSciNetzbMATHGoogle Scholar
- 40.He, J., Liu, Y.-M., Ke, H., Tian, J.-K., Li, X.: Bounds for the \(Z\)-spectral radius of nonnegative tensors. SpringerPlus 5, 1727 (2016) CrossRefGoogle Scholar
- 41.He, J., Huang, T.-Z.: Upper bound for the largest \(Z\)-eigenvalue of positive tensors. Appl. Math. Lett. 38, 110–114 (2014) MathSciNetCrossRefGoogle Scholar