Adjusted Sparse Tensor Product Spectral Galerkin Method for Solving Pseudodifferential Equations on the Sphere with Random Input Data

  • Duong Thanh PhamEmail author
  • Dinh Dũng


An adjusted sparse tensor product spectral Galerkin approximation method based on spherical harmonics is introduced and analyzed for solving pseudodifferential equations on the sphere with random input data. These equations arise from geodesy where the sphere is taken as a model of the earth. Numerical solutions to the corresponding \(k\)-th order statistical moment equations are found in adjusted sparse tensor approximation spaces which are accordingly designed to the regularity of the data and the equation. Established convergence theorem shows that the adjusted sparse tensor Galerkin discretization is superior not only to the full tensor product but also to the standard sparse tensor counterpart when the statistical moments of the data are of mixed unequal regularity. Numerical experiments illustrate our theoretical results.


Stochastic pseudodifferential equations Statistical moments Hyperbolic cross spectral methods Spheres 

Mathematics Subject Classification

65N30 65N15 35R60 41A25 



This research was funded by the Department of Science and Technology–Ho Chi Minh City (HCMC-DOST), and the Institute for Computational Science and Technology (ICST) at Ho Chi Minh city, Vietnam under Contract 21/2017/HD-KHCNTT on 21/09/2017. A part of this paper was done when the authors were visiting the Vietnam Institute for Advanced Study in Mathematics (VIASM). The authors thank VIASM for providing a fruitful research environment and working condition.


  1. 1.
    Aubin, J.-P.: Applied Functional Analysis, 2nd edn. Pure and Applied Mathematics (New York). Wiley–Interscience, New York (2000), with exercises by Bernard Cornet and Jean-Michel Lasry, Translated from the French by Carole Labrousse CrossRefzbMATHGoogle Scholar
  2. 2.
    Chernov, A.: Sparse polynomial approximation in positive order Sobolev spaces with bounded mixed derivatives and applications to elliptic problems with random loading. Appl. Numer. Math. 62, 360–377 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chernov, A., Dũng, D.: New explicit-in-dimension estimates for the cardinality of high-dimensional hyperbolic crosses and approximation of functions having mixed smoothness. J. Complex. 32, 92–121 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chernov, A., Pham, T.D.: Sparse tensor product spectral Galerkin BEM for elliptic problems with random data on a spheroid. Adv. Comput. Math. 41, 77–104 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chernov, A., Schwab, C.: Sparse \(p\)-version BEM for first kind boundary integral equations with random loading. Appl. Numer. Math. 59, 2698–2712 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Claessens, S.: Solutions to ellipsoidal boundary value problems for gravity field modelling. PhD thesis, Curtin University of Technology, Perth (2005) Google Scholar
  7. 7.
    Cohen, A., DeVore, R., Schwab, C.: Convergence rates of best \(N\)-term Galerkin approximations for a class of elliptic sPDEs. Found. Comput. Math. 10, 615–646 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dũng, D., Griebel, M.: Hyperbolic cross approximation in infinite dimensions. J. Complex. 33, 55–88 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dũng, D., Temlyakov, V., Ullrich, T.: Hyperbolic Cross Approximation. Advanced Courses in Mathematics—CRM Barcelona. Birkhäuser, Basel (2018) CrossRefGoogle Scholar
  10. 10.
    Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere with Applications to Geomathematics. Oxford University Press, Oxford (1998) zbMATHGoogle Scholar
  11. 11.
    Freeden, W., Windheuser, U.: Combined spherical harmonic and wavelet expansion—a future concept in Earth’s gravitational determination. Appl. Comput. Harmon. Anal. 4, 1–37 (1997) MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Grafarend, E.W., Krumm, F.W., Schwarze, V.S. (eds.): Geodesy: The Challenge of the 3rd Millennium. Springer, Berlin (2003) Google Scholar
  13. 13.
    Hörmander, L.: Pseudodifferential operators. Commun. Pure Appl. Math. 18, 501–517 (1965) CrossRefzbMATHGoogle Scholar
  14. 14.
    Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations. Applied Mathematical Sciences, vol. 164. Springer, Berlin (2008) zbMATHGoogle Scholar
  15. 15.
    Huang, H.-Y., Yu, D.-H.: Natural boundary element method for three dimensional exterior harmonic problem with an inner prolate spheroid boundary. J. Comput. Math. 24, 193–208 (2006) MathSciNetzbMATHGoogle Scholar
  16. 16.
    Khoromskij, B.N., Oseledets, I.: Quantics-TT collocation approximation of parameter-dependent and stochastic elliptic PDEs. Comput. Methods Appl. Math. 10, 376–394 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Khoromskij, B.N., Schwab, C.: Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDEs. SIAM J. Sci. Comput. 33, 364–385 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kohn, J.J., Nirenberg, L.: On the algebra of pseudodifferential operators. Commun. Pure Appl. Math. 18, 269–305 (1965) CrossRefzbMATHGoogle Scholar
  19. 19.
    Langel, R.A., Hinze, W.J.: The Magnetic Field of the Earth’s Lithosphere, the Satellite Perspective. Cambridge University Press, Cambridge (1998) Google Scholar
  20. 20.
    Morton, T.M., Neamtu, M.: Error bounds for solving pseudodifferential equations on spheres. J. Approx. Theory 114, 242–268 (2002) MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Müller, C.: Spherical Harmonics. Lecture Notes in Mathematics, vol. 17. Springer, Berlin (1966) zbMATHGoogle Scholar
  22. 22.
    Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, New York (2000) Google Scholar
  23. 23.
    Nitsche, P.-A.: Best \(N\) term approximation spaces for tensor product wavelet bases. Constr. Approx. 24, 49–70 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Petersen, B.E.: Introduction to the Fourier transform & pseudodifferential operators. Monographs and Studies in Mathematics, vol. 19. Pitman, Boston (1983) Google Scholar
  25. 25.
    Pham, T.D., Tran, T.: Strongly elliptic pseudodifferential equations on the sphere with radial basis functions. Numer. Math. 128, 589–614 (2014) MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Pham, T.D., Tran, T.: Solving non-strongly elliptic pseudodifferential equations on a sphere using radial basis functions. Comput. Math. Appl. 70, 1970–1983 (2015) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Pham, T.D., Tran, T., Chernov, A.: Pseudodifferential equations on the sphere with spherical splines. Math. Models Methods Appl. Sci. 21, 1933–1959 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Pinchon, D., Hoggan, P.E.: Rotation matrices for real spherical harmonics: general rotations of atomic orbitals in space-fixed axes. J. Phys. A 40, 1597–1610 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Schwab, C., Gittelson, C.J.: Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs. Acta Numer. 20, 291–467 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Schwab, C., Todor, R.-A.: Sparse finite elements for elliptic problems with stochastic loading. Numer. Math. 95, 707–734 (2003) MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Schwab, C., Todor, R.A.: Sparse finite elements for stochastic elliptic problems—higher order moments. Computing 71, 43–63 (2003) MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Schwab, C., Todor, R.A.: Karhunen–Loève approximation of random fields by generalized fast multipole methods. J. Comput. Phys. 217, 100–122 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Stephan, E.P.: Boundary integral equations for screen problems in \({{\mathbb{R}}}^{3}\). Integral Equ. Oper. Theory 10, 236–257 (1987) CrossRefzbMATHGoogle Scholar
  34. 34.
    Svensson, S.L.: Pseudodifferential operators—a new approach to the boundary problems of physical geodesy. Manuscr. Geod. 8, 1–40 (1983) zbMATHGoogle Scholar
  35. 35.
    Tran, T., Le Gia, Q.T., Sloan, I.H., Stephan, E.P.: Boundary integral equations on the sphere with radial basis functions: error analysis. Appl. Numer. Math. 59, 2857–2871 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    von Petersdorff, T., Schwab, C.: Sparse finite element methods for operator equations with stochastic data. Appl. Math. 51, 145–180 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Wendland, W.L., Stephan, E.P.: A hypersingular boundary integral method for two-dimensional screen and crack problems. Arch. Ration. Mech. Anal. 112, 363–390 (1990) MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute for Computational Science and TechnologyHo Chi Minh CityVietnam
  2. 2.Vietnamese German UniversityBinh Duong New CityVietnam
  3. 3.Information Technology InstituteVietnam National University, HanoiHanoiVietnam

Personalised recommendations