Advertisement

The Dual Kaczmarz Algorithm

  • Anna Aboud
  • Emelie Curl
  • Steven N. Harding
  • Mary Vaughan
  • Eric S. WeberEmail author
Article

Abstract

The Kaczmarz algorithm is an iterative method for solving a system of linear equations. It can be extended so as to reconstruct a vector \(x\) in a (separable) Hilbert space from the inner-products \(\{\langle x, \phi _{n} \rangle \}\). The Kaczmarz algorithm defines a sequence of approximations from the sequence \(\{\langle x, \phi _{n} \rangle \}\); these approximations only converge to \(x\) when \(\{\phi _{n}\}\) is effective. We dualize the Kaczmarz algorithm so that \(x\) can be obtained from \(\{\langle x, \phi _{n} \rangle \}\) by using a second sequence \(\{\psi _{n}\}\) in the reconstruction. This allows for the recovery of \(x\) even when the sequence \(\{\phi _{n}\}\) is not effective; in particular, our dualization yields a reconstruction when the sequence \(\{\phi _{n}\}\) is almost effective. We also obtain some partial results characterizing when the sequence of approximations from \(\{\langle x, \phi _{n} \rangle \}\) using \(\{\psi _{n}\}\) converges to \(x\), in which case \(\{(\phi _{n}, \psi _{n})\}\) is called an effective pair.

Keywords

Kaczmarz algorithm Effective sequence Frame Gram matrix Hilbert space 

Mathematics Subject Classification (2010)

41A65 65D15 42C15 65F10 

Notes

Acknowledgements

Anna Aboud and Eric Weber were supported in part by the National Science Foundation and the National Geospatial-Intelligence Agency under NSF award #1832054.

References

  1. 1.
    Casazza, P.G.: The art of frame theory. Taiwan. J. Math. 4(2), 129–201 (2000) MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Casazza, P.G., Christensen, O.: Perturbation of operators and applications to frame theory. J. Fourier Anal. Appl. 3(5), 543–557 (1997). Dedicated to the memory of Richard J. Dun MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Christensen, O.: Frame perturbations. Proc. Am. Math. Soc. 123(4), 1217–1220 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Basel (2003) CrossRefzbMATHGoogle Scholar
  5. 5.
    Christensen, O.: Operators with closed range, pseudo-inverses, and perturbation of frames for a subspace. Can. Math. Bull. 42(1), 37–45 (1999) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Czaja, W., Tanis, J.H.: Kaczmarz algorithm and frames. Int. J. Wavelets Multiresolut. Inf. Process. 11(5), 1350036 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Haller, R., Szwarc, R.: Kaczmarz algorithm in Hilbert space. Stud. Math. 169(2), 123–132 (2005) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Jeong, H., Sinan Güntürk, C.: Convergence of the randomized Kaczmarz method for phase retrieval. CoRR (2017). arXiv:1706.10291
  9. 9.
    Kaczmarz, S.: Approximate solution of systems of linear equations. Int. J. Control 57(6), 1269–1271 (1993). Translated from the German MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kwapień, S., Mycielski, J.: On the Kaczmarz algorithm of approximation in infinite-dimensional spaces. Stud. Math. 148(1), 75–86 (2001) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Natterer, F.: The Mathematics of Computerized Tomography. Classics in Applied Mathematics, vol. 32. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2001). Reprint of the 1986 original CrossRefzbMATHGoogle Scholar
  12. 12.
    Needell, D., Srebro, N., Ward, R.: Stochastic gradient descent, weighted sampling, and the randomized Kaczmarz algorithm. Math. Program. 155(1–2, Ser. A), 549–573 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Paley, R.E.A.C., Wiener, N.: Fourier Transforms in the Complex Domain. American Mathematical Society Colloquium Publications, vol. 19. Am. Math. Soc., Providence (1987). Reprint of the 1934 original zbMATHGoogle Scholar
  14. 14.
    Szwarc, R.: Kaczmarz algorithm in Hilbert space and tight frames. Appl. Comput. Harmon. Anal. 22(3), 382–385 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Tan, Y.S., Vershynin, R.: Phase retrieval via randomized Kaczmarz: theoretical guarantees, CoRR (2017). arXiv:1706.09993

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of MathematicsIowa State UniversityAmesUSA

Personalised recommendations