Advertisement

Multiple Solutions for a Non-cooperative Elliptic System of Kirchhoff Type Involving \(p\)-Biharmonic Operator and Critical Growth

  • Nguyen Thanh ChungEmail author
Article
  • 13 Downloads

Abstract

In this paper, we consider a class of non-cooperative elliptic systems of Kirchhoff type involving \(p\)-biharmonic operator and critical growth. With the help of the Limit index theory due to Li (Nonlinear Anal. TMA 30(7):4619–4627, 1997) and the concentration compactness principle, we establish the existence of infinitely many solutions for the problem under the suitable conditions on the nonlinearity.

Keywords

Non-cooperative elliptic system Kirchhoff type problem \(p\)-Biharmonic operator Critical exponents Concentration compactness principle Limit index theory 

Mathematics Subject Classification

34B15 34B18 35J35 35G30 

Notes

Acknowledgements

The author would like to thank the referees for their suggestions and helpful comments which improved the presentation of the original manuscript. This research is supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) (Grant N.101.02.2017.04).

References

  1. 1.
    Afrouzi, G.A., Mirzapour, M., Chung, N.T.: Existence and multiplicity of solutions for Kirchhoff type problems involving \(p(x)\)-biharmonic operators. Z. Anal. Anwend. 33(3), 289–303 (2014) MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Autuori, G., Colasuonno, F., Pucci, P.: On the existence of stationary solutions for higher-order \(p\)-Kirchhoff problems. Commun. Contemp. Math. 16(5), 1450002 (2014), 43 pages MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Benci, V.: On critical point theory for indefinite functional in presence of symmetries. Trans. Am. Math. Soc. 274(2), 533–572 (1982) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brezis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bueno, H., Leme, L.P., Rodrigues, H.: Multiplicity of solutions for \(p\)-biharmonic problems with critical growth. Rocky Mt. J. Math. 48(2), 425–442 (2018) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cai, S., Li, Y.: Multiple solutions for a system of equations with \(p\)-Laplacian. J. Differ. Equ. 245(9), 2504–2521 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chabrowski, J.: Weak Convergence Methods for Semilinear Elliptic Equations. World Scientific, Singapore (1999) CrossRefzbMATHGoogle Scholar
  8. 8.
    Chipot, M., Lovat, B.: Some remarks on nonlocal elliptic and parabolic problems. Nonlinear Anal. TMA 30(7), 4619–4627 (1997) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chung, N.T.: Existence of positive solutions for a nonlocal problem with dependence on the gradient. Appl. Math. Lett. 41, 28–34 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chung, N.T., Minh, P.H.: Kirchhoff type problems involving \(p\)-biharmonic operators and critical exponents. J. Appl. Anal. Comput. 7(2), 659–669 (2017) MathSciNetGoogle Scholar
  11. 11.
    Colasuonno, F., Pucci, P.: Multiplicity of solutions for \(p(x)\)-polyharmonic Kirchhoff equations. Nonlinear Anal. TMA 74(17), 5962–5974 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dai, G.: Three solutions for a nonlocal Dirichlet boundary value problem involving the \(p(x)\)-Laplacian. Appl. Anal. 92(1), 191–210 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Deng, Z., Huang, Y.: Symmetric solutions for a class of singular biharmonic elliptic systems involving critical exponents. Appl. Math. Comput. 264(1), 323–334 (2015) MathSciNetzbMATHGoogle Scholar
  14. 14.
    Fang, Y., Zhang, J.: Multiplicity of solutions for a class of elliptic systems with critical Sobolev exponent. Nonlinear Anal. TMA 73(9), 2767–2778 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Figueiredo, G.M., Junior, J.R.S.: Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth. Differ. Integral Equ. 25(9–10), 853–868 (2012) MathSciNetzbMATHGoogle Scholar
  16. 16.
    Huang, D.W., Li, Y.Q.: Multiplicity of solutions for a noncooperative \(p\)-Laplacian elliptic system in \(\mathbb{R}^{N}\). J. Differ. Equ. 215(1), 206–223 (2005) CrossRefzbMATHGoogle Scholar
  17. 17.
    Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883) zbMATHGoogle Scholar
  18. 18.
    Lei, C.Y., Liu, G.S., Guo, L.T.: Multiple positive solutions for a Kirchhoff type problem with a critical nonlinearity. Nonlinear Anal., Real World Appl. 31, 343–355 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Li, Y.Q.: A limit index theory and its applications. Nonlinear Anal. (TMA) 25(12), 1371–1389 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Liang, S., Shi, S.: Multiplicity of solutions for the noncooperative \(p(x)\)-Laplacian operator elliptic system involving the critical growth. J. Dyn. Control Syst. 18(3), 379–396 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Liang, S., Zhang, J.: Multiple solutions for noncooperative \(p(x)\)-Laplacian equations in \(\mathbb{R}^{N}\) involving the critical exponent. J. Math. Anal. Appl. 403(2), 344–356 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lin, F., Li, Y.: Multiplicity of solutions for a noncooperative elliptic system with critical Sobolev exponent. Z. Angew. Math. Phys. 60(3), 402–415 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lions, P.L.: The concentration compactness principle in the calculus of variations, the limit case (I). Rev. Mat. Iberoam. 1(1), 145–201 (1985) MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lions, P.L.: The concentration compactness principle in the calculus of variations, the limit case (II). Rev. Mat. Iberoam. 1(2), 45–121 (1985) MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lu, D.F., Xiao, J.: Multiplicity of solutions for biharmonic elliptic systems involving critical nonlinearity. Bull. Korean Math. Soc. 50(5), 1693–1710 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Mishra, P.K., Goyal, S., Sreenadh, K.: Polyharmonic Kirchhoff type equations with singular exponential nonlinearities. Commun. Pure Appl. Anal. 15(5), 1689–1717 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55(2), 149–162 (1977) MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978) zbMATHGoogle Scholar
  29. 29.
    Wang, W., Zhao, P.: Nonuniformly nonlinear elliptic equations of \(p\)-biharmonic type. J. Math. Anal. Appl. 348(2), 730–738 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Willem, M.: Minimax Theorems. Birkhauser, Boston (1996) CrossRefzbMATHGoogle Scholar
  31. 31.
    Zhang, Z.T., Sun, Y.M.: Existence and multiplicity of solutions for nonlocal systems with Kirchhoff type. Acta Math. Appl. Sin. Engl. Ser. 32(1), 35–54 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Zhao, L., Zhang, N.: Existence of solutions for a higher order Kirchhoff type problem with exponential critical growth. Nonlinear Anal. TMA 132, 214–226 (2016) MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of MathematicsQuang Binh UniversityDong HoiVietnam

Personalised recommendations